Jieyi Chen , Zhen Wen , Li Zheng , Jiaying Lu , Hui Lu , Yiwen Ren , Wei Chen
{"title":"HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space","authors":"Jieyi Chen , Zhen Wen , Li Zheng , Jiaying Lu , Hui Lu , Yiwen Ren , Wei Chen","doi":"10.1016/j.gmod.2024.101237","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced quantum computers have the capability to perform practical quantum computing to address specific problems that are intractable for classical computers. Nevertheless, these computers are susceptible to noise, leading to unexpectable errors in outcomes, which makes them less trustworthy. To address this challenge, we propose HammingVis, a visual analytics approach that helps identify and understand errors in quantum outcomes. Given that these errors exhibit latent structural patterns within Hamming space, we introduce two graph visualizations to reveal these patterns from distinct perspectives. One highlights the overall structure of errors, while the other focuses on the impact of errors within important subspaces. We further develop a prototype system for interactively exploring and discerning the correct outcomes within Hamming space. A novel design is presented to distinguish the neighborhood patterns between error and correct outcomes. The effectiveness of our approach is demonstrated through case studies involving two classic quantum algorithms’ outcome data.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"136 ","pages":"Article 101237"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000250","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced quantum computers have the capability to perform practical quantum computing to address specific problems that are intractable for classical computers. Nevertheless, these computers are susceptible to noise, leading to unexpectable errors in outcomes, which makes them less trustworthy. To address this challenge, we propose HammingVis, a visual analytics approach that helps identify and understand errors in quantum outcomes. Given that these errors exhibit latent structural patterns within Hamming space, we introduce two graph visualizations to reveal these patterns from distinct perspectives. One highlights the overall structure of errors, while the other focuses on the impact of errors within important subspaces. We further develop a prototype system for interactively exploring and discerning the correct outcomes within Hamming space. A novel design is presented to distinguish the neighborhood patterns between error and correct outcomes. The effectiveness of our approach is demonstrated through case studies involving two classic quantum algorithms’ outcome data.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.