Toward reproducible and interoperable environmental modeling: Integration of HydroShare with server-side methods for exposing large-extent spatial datasets to models

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-10-12 DOI:10.1016/j.envsoft.2024.106239
Young-Don Choi , Iman Maghami , Jonathan L. Goodall , Lawrence Band , Ayman Nassar , Laurence Lin , Linnea Saby , Zhiyu Li , Shaowen Wang , Chris Calloway , Hong Yi , Martin Seul , Daniel P. Ames , David G. Tarboton
{"title":"Toward reproducible and interoperable environmental modeling: Integration of HydroShare with server-side methods for exposing large-extent spatial datasets to models","authors":"Young-Don Choi ,&nbsp;Iman Maghami ,&nbsp;Jonathan L. Goodall ,&nbsp;Lawrence Band ,&nbsp;Ayman Nassar ,&nbsp;Laurence Lin ,&nbsp;Linnea Saby ,&nbsp;Zhiyu Li ,&nbsp;Shaowen Wang ,&nbsp;Chris Calloway ,&nbsp;Hong Yi ,&nbsp;Martin Seul ,&nbsp;Daniel P. Ames ,&nbsp;David G. Tarboton","doi":"10.1016/j.envsoft.2024.106239","DOIUrl":null,"url":null,"abstract":"<div><div>Reproducible environmental modelling often relies on spatial datasets as inputs, typically manually subset for specific areas. Yet, models can benefit from a data distribution approach facilitated by online repositories, and automating processes to foster reproducibility. This study introduces a method leveraging diverse state-scale spatial datasets to create cohesive packages for GIS-based environmental modelling. These datasets were generated and shared via GeoServer and THREDDS Data Server connected to HydroShare, contrasting with conventional distribution methods. Using the Regional Hydro-Ecologic Simulation System (RHESSys) across three U.S. catchment-scale watersheds, we demonstrate minimal errors in spatial inputs and model streamflow outputs compared to traditional approaches. This spatial data-sharing method facilitates consistent model creation, fostering reproducibility. Its broader impact allows scientists to tailor the method to various use cases, such as exploring different scales beyond state-scale or applying it to other online repositories using existing data distribution systems, eliminating the need to develop their own.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106239"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003001","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Reproducible environmental modelling often relies on spatial datasets as inputs, typically manually subset for specific areas. Yet, models can benefit from a data distribution approach facilitated by online repositories, and automating processes to foster reproducibility. This study introduces a method leveraging diverse state-scale spatial datasets to create cohesive packages for GIS-based environmental modelling. These datasets were generated and shared via GeoServer and THREDDS Data Server connected to HydroShare, contrasting with conventional distribution methods. Using the Regional Hydro-Ecologic Simulation System (RHESSys) across three U.S. catchment-scale watersheds, we demonstrate minimal errors in spatial inputs and model streamflow outputs compared to traditional approaches. This spatial data-sharing method facilitates consistent model creation, fostering reproducibility. Its broader impact allows scientists to tailor the method to various use cases, such as exploring different scales beyond state-scale or applying it to other online repositories using existing data distribution systems, eliminating the need to develop their own.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现可复制和可互操作的环境建模:将 HydroShare 与服务器端方法相结合,为模型提供大范围空间数据集
可重现的环境建模通常依赖空间数据集作为输入,这些数据集通常是针对特定区域的人工子集。然而,通过在线资源库促进数据分布的方法,以及促进可重复性的自动化流程,可使模型受益匪浅。本研究介绍了一种利用不同州级空间数据集创建基于地理信息系统的环境建模内聚数据包的方法。这些数据集是通过连接到 HydroShare 的 GeoServer 和 THREDDS 数据服务器生成和共享的,与传统的分发方法形成鲜明对比。与传统方法相比,我们使用区域水文生态模拟系统(RHESSys)横跨美国三个集水尺度流域,证明空间输入和模型流输出的误差极小。这种空间数据共享方法有助于创建一致的模型,从而提高可重复性。它的影响范围更广,科学家们可以根据不同的使用情况调整该方法,例如探索国家尺度以外的不同尺度,或利用现有的数据分发系统将其应用于其他在线资源库,而无需开发自己的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1