Unlocking the potential of borophene nanoribbons for efficient hydrogen storage

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2024-10-12 DOI:10.1016/j.chemphys.2024.112482
Mahmoud A.S. Sakr , Hazem Abdelsalam , Omar H. Abd-Elkader , Ghada M. Abdelrazek , Nahed H. Teleb , Qinfang Zhang
{"title":"Unlocking the potential of borophene nanoribbons for efficient hydrogen storage","authors":"Mahmoud A.S. Sakr ,&nbsp;Hazem Abdelsalam ,&nbsp;Omar H. Abd-Elkader ,&nbsp;Ghada M. Abdelrazek ,&nbsp;Nahed H. Teleb ,&nbsp;Qinfang Zhang","doi":"10.1016/j.chemphys.2024.112482","DOIUrl":null,"url":null,"abstract":"<div><div>This research explores the structural, electronic, optical, and hydrogen storage properties of borophene nanoribbons (BNRs) with armchair (ANR-B-H) and zigzag (ZNR B-H) edges. Computational simulations optimized these structures, revealing that 7ZNR-B-H has a superior binding energy. Chemical modifications, such as fluorine passivation and functionalization, influenced bond parameters and quantum properties. Bilayer BNRs showed increased stability and enhanced electrical conductivity. Our study demonstrated promising hydrogen storage capabilities, with passivated and functionalized BNRs achieving suitable adsorption energies and a significant gravimetric storage capacity of 20.32 wt%, exceeding DOE standards. NH<sub>2</sub> functionalization notably improved adsorption energy, enhancing potential for efficient hydrogen storage. Changes in absorption spectra post-H<sub>2</sub> adsorption further highlight BNRs’ potential for hydrogen storage applications. These findings provide valuable insights into BNRs, paving the way for their use in electronic devices and hydrogen storage systems.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"588 ","pages":"Article 112482"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424003112","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the structural, electronic, optical, and hydrogen storage properties of borophene nanoribbons (BNRs) with armchair (ANR-B-H) and zigzag (ZNR B-H) edges. Computational simulations optimized these structures, revealing that 7ZNR-B-H has a superior binding energy. Chemical modifications, such as fluorine passivation and functionalization, influenced bond parameters and quantum properties. Bilayer BNRs showed increased stability and enhanced electrical conductivity. Our study demonstrated promising hydrogen storage capabilities, with passivated and functionalized BNRs achieving suitable adsorption energies and a significant gravimetric storage capacity of 20.32 wt%, exceeding DOE standards. NH2 functionalization notably improved adsorption energy, enhancing potential for efficient hydrogen storage. Changes in absorption spectra post-H2 adsorption further highlight BNRs’ potential for hydrogen storage applications. These findings provide valuable insights into BNRs, paving the way for their use in electronic devices and hydrogen storage systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘硼吩纳米带在高效储氢方面的潜力
这项研究探索了具有扶手椅边(ANR-B-H)和之字形边(ZNR B-H)的硼吩纳米带(BNR)的结构、电子、光学和储氢特性。计算模拟优化了这些结构,发现 7ZNR-B-H 具有更高的结合能。氟钝化和官能化等化学修饰影响了键参数和量子特性。双层 BNR 显示出更高的稳定性和更强的导电性。我们的研究显示了良好的储氢能力,钝化和官能化 BNR 具有合适的吸附能和 20.32 wt% 的显著重力储氢容量,超过了 DOE 标准。NH2 功能化显著提高了吸附能,增强了高效储氢的潜力。吸附氢后吸收光谱的变化进一步凸显了 BNR 在储氢应用方面的潜力。这些发现为 BNRs 提供了宝贵的见解,为其在电子设备和储氢系统中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Structural and spectral characterizations of mono-nitrogen doped C70 fullerene by soft X-ray spectroscopy Construction of dual-output molecular logic circuit based on bovine serum albumin loaded with two fluorescent compounds Investigation on the development of Novel PAM structure as high-performance clay inhibitor in HT/HP conditions by using functional groups Modulated electronic properties of borophene nanoribbons using copper and oxygen atoms Ice-grain impact on a rough amorphous silica surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1