Adsorption of CO2 on mechanochemically synthesized silicon oxycarbide composites

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2024-10-18 DOI:10.1016/j.chemphys.2024.112486
{"title":"Adsorption of CO2 on mechanochemically synthesized silicon oxycarbide composites","authors":"","doi":"10.1016/j.chemphys.2024.112486","DOIUrl":null,"url":null,"abstract":"<div><div>The present study explores the mechanochemical synthesis of porous silicon oxycarbide composites using commercial activated carbon and hydrated silica as precursors without additional functionalization, aiming to be used as effective adsorbents for carbon dioxide removal from gas streams. By adjusting the hydrated silica/activated carbon mass ratio, a set of materials were prepared with varying surface areas (256–662 m<sup>2</sup>/g), pore volumes (0.28–0.45 cm<sup>3</sup>/g), and surface functional groups concentrations (0.824–0.996 mmol/g). The optimal silicon oxycarbide composite (hydrated silica/activated carbon mass ratio of 1.5) demonstrated the CO<sub>2</sub> adsorption capacity of 3.41 mmol/g at 25 °C and 1 bar, which can be attributed to the composite’s well-developed porosity and high surface functionality. In addition, the adsorbent exhibited high CO<sub>2</sub>/N<sub>2</sub> selectivity of 15.2 along with stable cycling performance. These findings indicate that mechanochemically synthesized silicon oxycarbide composites have a considerable potential in the field of CO<sub>2</sub> capture.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030101042400315X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study explores the mechanochemical synthesis of porous silicon oxycarbide composites using commercial activated carbon and hydrated silica as precursors without additional functionalization, aiming to be used as effective adsorbents for carbon dioxide removal from gas streams. By adjusting the hydrated silica/activated carbon mass ratio, a set of materials were prepared with varying surface areas (256–662 m2/g), pore volumes (0.28–0.45 cm3/g), and surface functional groups concentrations (0.824–0.996 mmol/g). The optimal silicon oxycarbide composite (hydrated silica/activated carbon mass ratio of 1.5) demonstrated the CO2 adsorption capacity of 3.41 mmol/g at 25 °C and 1 bar, which can be attributed to the composite’s well-developed porosity and high surface functionality. In addition, the adsorbent exhibited high CO2/N2 selectivity of 15.2 along with stable cycling performance. These findings indicate that mechanochemically synthesized silicon oxycarbide composites have a considerable potential in the field of CO2 capture.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳在机械化学合成的碳氧化合物硅复合材料上的吸附作用
本研究探讨了以商用活性炭和水合二氧化硅为前驱体,在不进行额外功能化的情况下,机械化学合成多孔碳氧硅复合材料的方法,旨在将其用作去除气流中二氧化碳的有效吸附剂。通过调整水合二氧化硅/活性炭的质量比,制备出了一组具有不同表面积(256-662 m2/g)、孔体积(0.28-0.45 cm3/g)和表面官能团浓度(0.824-0.996 mmol/g)的材料。最佳碳氧硅复合材料(水合二氧化硅/活性炭质量比为 1.5)在 25 °C 和 1 bar 条件下的二氧化碳吸附容量为 3.41 mmol/g,这归功于复合材料发达的孔隙率和高表面官能团。此外,该吸附剂还具有 15.2 的 CO2/N2 高选择性和稳定的循环性能。这些研究结果表明,机械化学合成的氧碳化硅复合材料在二氧化碳捕集领域具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Preparation of electrochemical supercapacitor based on fluffy sphere-like NiCoCu-carbonate hydroxide Nondynamical correlation effects in multidimensional potential energy curves of prototypical hydrocarbons Enhanced VOCs adsorption on Group VIII transition metal-doped MoS2: A DFT study Choline chloride-Urea based deep eutectic Solvent: Characterization, interfacial behavior and Synergism in binary (surfactant) systems Vertical stacking approach for tailoring electronic and optical properties of ultrathin two-dimensional vdW heterostructures of P-MAB (M=Ti, Zr, Hf; A=S, B=Se)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1