{"title":"Crushing behavior of GFRP composite-reinforced PVC tubes: Experimental testing and numerical simulation","authors":"Khaled Yousif , Aamir Dean , Elsadig Mahdi","doi":"10.1016/j.compscitech.2024.110903","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces glass fiber reinforced polymer (GFRP)-reinforced Polyvinyl Chloride (PVC) tubes, both corrugated and non-corrugated, designed as energy absorber devices. The PVC tubes were externally and internally reinforced with GFRP composite oriented at <span><math><mrow><mo>±</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> and subjected to quasi-static axial compression tests. Results indicated that all reinforced tubes exhibited significantly higher load-bearing capacity, energy absorption (EA) capability, and crushing force efficiency (CFE) compared to standard PVC tubes. Among the tested specimens, externally reinforced corrugated tubes demonstrated the highest specific energy absorption (SEA), surpassing other configurations by 17.5 kJ/kg when considering both pre- and post-crushing stages combined. However, these corrugated specimens showed instability during crushing, reflected in poor instantaneous crush force efficiency (iCFE) and the lowest iCFE among the composite tubes, with an average decrease of 43.59%.</div><div>The corrugation notably increased the initial peak load, enhancing energy absorption in the pre-crushing stage without compromising the stability of crush force efficiency. Additionally, the combination of external and internal reinforcement significantly improved CFE and iCFE. Consequently, the PVC tubes combining corrugation with both external and internal reinforcement emerged as the best-performing configuration among all tested tubes.</div><div>Furthermore, a 3D Finite Element (FE) model was developed using <span>ABAQUS</span> FE code with user-defined subroutines to simulate the crushing process. The constitutive models and numerical procedures employed are detailed. The FE model’s predictions showed a satisfactory correlation with experimental results, providing valuable insights into the crushing mechanics and offering a predictive tool for future design optimizations.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110903"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces glass fiber reinforced polymer (GFRP)-reinforced Polyvinyl Chloride (PVC) tubes, both corrugated and non-corrugated, designed as energy absorber devices. The PVC tubes were externally and internally reinforced with GFRP composite oriented at and subjected to quasi-static axial compression tests. Results indicated that all reinforced tubes exhibited significantly higher load-bearing capacity, energy absorption (EA) capability, and crushing force efficiency (CFE) compared to standard PVC tubes. Among the tested specimens, externally reinforced corrugated tubes demonstrated the highest specific energy absorption (SEA), surpassing other configurations by 17.5 kJ/kg when considering both pre- and post-crushing stages combined. However, these corrugated specimens showed instability during crushing, reflected in poor instantaneous crush force efficiency (iCFE) and the lowest iCFE among the composite tubes, with an average decrease of 43.59%.
The corrugation notably increased the initial peak load, enhancing energy absorption in the pre-crushing stage without compromising the stability of crush force efficiency. Additionally, the combination of external and internal reinforcement significantly improved CFE and iCFE. Consequently, the PVC tubes combining corrugation with both external and internal reinforcement emerged as the best-performing configuration among all tested tubes.
Furthermore, a 3D Finite Element (FE) model was developed using ABAQUS FE code with user-defined subroutines to simulate the crushing process. The constitutive models and numerical procedures employed are detailed. The FE model’s predictions showed a satisfactory correlation with experimental results, providing valuable insights into the crushing mechanics and offering a predictive tool for future design optimizations.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.