Marie-Laure Aix, Mélaine Claitte, Dominique J. Bicout
{"title":"Exposure to particulate matter when commuting in the urban area of Grenoble, France","authors":"Marie-Laure Aix, Mélaine Claitte, Dominique J. Bicout","doi":"10.1016/j.atmosenv.2024.120887","DOIUrl":null,"url":null,"abstract":"<div><div>Air pollution is a major cause of mortality and chronic diseases worldwide, with particulate matter (PM) being the primary contributor to this burden. Few studies have yet been carried out on the effect of modes of transport, times of day or travel locations on the exposure of individuals to PM. We conducted an experiment in Grenoble, France, in spring 2022 to study factors determining the individual exposure to PM. Using low-cost sensors (LCS), PM<sub>1</sub> (PM < 1 μm) and PM<sub>2.5</sub> (PM < 2.5 μm) levels were measured in four transport modes (bike, walk, bus, and tramway), across four different streets and at three different times of the day. Findings are: (i) - the mode of transport plays a more important role on levels of PM<sub>ratios</sub> (PM concentration ratio to reference) than the time of the day or the location, (ii) - PM<sub>ratios</sub> and inhalation doses are higher in active modes of transport (bike, walk) than in passive ones (bus, tram), (iii) – levels of exposure to PM are ranked as: tram < bus < walk < bike, and (iv) – a statistical model has been developed to predict PM<sub>ratios</sub> as a function of transport mode, travel period, street ratio, and traffic. Exposures to PM in trams are found 12%–25% and 13%–20% lower than in passive modes of transport for PM<sub>1</sub> and PM<sub>2.5</sub>, respectively. Wearing LCSs makes it possible to estimate commuters' exposure to PM and their use should be encouraged for prevention purposes.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"339 ","pages":"Article 120887"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005624","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution is a major cause of mortality and chronic diseases worldwide, with particulate matter (PM) being the primary contributor to this burden. Few studies have yet been carried out on the effect of modes of transport, times of day or travel locations on the exposure of individuals to PM. We conducted an experiment in Grenoble, France, in spring 2022 to study factors determining the individual exposure to PM. Using low-cost sensors (LCS), PM1 (PM < 1 μm) and PM2.5 (PM < 2.5 μm) levels were measured in four transport modes (bike, walk, bus, and tramway), across four different streets and at three different times of the day. Findings are: (i) - the mode of transport plays a more important role on levels of PMratios (PM concentration ratio to reference) than the time of the day or the location, (ii) - PMratios and inhalation doses are higher in active modes of transport (bike, walk) than in passive ones (bus, tram), (iii) – levels of exposure to PM are ranked as: tram < bus < walk < bike, and (iv) – a statistical model has been developed to predict PMratios as a function of transport mode, travel period, street ratio, and traffic. Exposures to PM in trams are found 12%–25% and 13%–20% lower than in passive modes of transport for PM1 and PM2.5, respectively. Wearing LCSs makes it possible to estimate commuters' exposure to PM and their use should be encouraged for prevention purposes.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.