Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation
Meng-Chen Huang , Chao-Hua Xue , Zhongxue Bai , Jun Cheng , Yong-Gang Wu , Chao-Qun Ma , Li Wan , Long Xie , Hui-Di Wang , Bing-Ying Liu , Xiao-Jing Guo
{"title":"Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation","authors":"Meng-Chen Huang , Chao-Hua Xue , Zhongxue Bai , Jun Cheng , Yong-Gang Wu , Chao-Qun Ma , Li Wan , Long Xie , Hui-Di Wang , Bing-Ying Liu , Xiao-Jing Guo","doi":"10.1016/j.jechem.2024.09.051","DOIUrl":null,"url":null,"abstract":"<div><div>All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems. However, the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition. Herein, inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins, a smart thermal management composite hydrogel (PNA@H-PM Gel) system was subtly created though an “on-demand” dual-layer structure design strategy. The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation. Furthermore, this system demonstrates superb modulations of both the solar reflectance (Δ<em>R</em> = 0.74) and thermal emissivity (Δ<em>E</em> = 0.52) in response to ambient temperature changes, highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6 °C in summer and 6.1 °C in winter, respectively. Moreover, compared to standard building baselines, the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates. This novel solution, inspired by penguins in the real world, will offer a fresh approach for producing intelligent, energy-saving thermal management materials, and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 175-190"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems. However, the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition. Herein, inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins, a smart thermal management composite hydrogel (PNA@H-PM Gel) system was subtly created though an “on-demand” dual-layer structure design strategy. The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation. Furthermore, this system demonstrates superb modulations of both the solar reflectance (ΔR = 0.74) and thermal emissivity (ΔE = 0.52) in response to ambient temperature changes, highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6 °C in summer and 6.1 °C in winter, respectively. Moreover, compared to standard building baselines, the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates. This novel solution, inspired by penguins in the real world, will offer a fresh approach for producing intelligent, energy-saving thermal management materials, and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy