Hong Lv , Zening Wu , Xiaokang Zheng , Dengming Yan , Zhilei Yu , Wenxiu Shang
{"title":"Multi-attribute diagnosis of urban flood-bearing bodies based on integrated learning with Stacking–GPR–QPSO coupling","authors":"Hong Lv , Zening Wu , Xiaokang Zheng , Dengming Yan , Zhilei Yu , Wenxiu Shang","doi":"10.1016/j.jhydrol.2024.132222","DOIUrl":null,"url":null,"abstract":"<div><div>Flood-bearing bodies are urban components directly impacted and damaged by disasters. Current methods for attribute identification and diagnosis of flood-bearing bodies, relying on real-time monitoring, are inadequate for pre-disaster forecasting and lack comprehensiveness. To reduce the uncertainty associated with single data sources, a Dual Path Network (DPN) method was employed to extract feature vectors based on multi-source datasets. A meta-classifier was constructed by integrating five base learners using Stacking, optimized by Quantum Particle Swarm Optimization (QPSO)-enhanced Gaussian Process Regression, forming an ensemble learner for predicting urban spatial classification. Utilizing GIS proximity analysis functions, attributes of functional zones, spatial attributes of points of interest (POI), and flood loss were assigned to each flood-bearing body grid. By overlaying urban flood inundation maps, multi-attribute diagnosis of flood-bearing bodies was achieved. The Jinshui District of Zhengzhou, China, is selected as the study area. The results show: (1) Predictions of urban functional zone categories in four other districts of Zhengzhou showed an average accuracy rate of 78.5 % through random sampling point validation. The threshold effect of prediction accuracy at different scales was significant. (2) Simulated flood economic losses for recurrence intervals of 1 year, 5 years, 10 years, 20 years, 50 years, and 100 years exhibited an exponential growth trend. (3) The multiple flood-bearing attributes of each flooded grid can be diagnosed. Finally, the model was effectively verified by simulating and comparing historical data from the “7·20” flood event in Zhengzhou.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132222"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016184","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Flood-bearing bodies are urban components directly impacted and damaged by disasters. Current methods for attribute identification and diagnosis of flood-bearing bodies, relying on real-time monitoring, are inadequate for pre-disaster forecasting and lack comprehensiveness. To reduce the uncertainty associated with single data sources, a Dual Path Network (DPN) method was employed to extract feature vectors based on multi-source datasets. A meta-classifier was constructed by integrating five base learners using Stacking, optimized by Quantum Particle Swarm Optimization (QPSO)-enhanced Gaussian Process Regression, forming an ensemble learner for predicting urban spatial classification. Utilizing GIS proximity analysis functions, attributes of functional zones, spatial attributes of points of interest (POI), and flood loss were assigned to each flood-bearing body grid. By overlaying urban flood inundation maps, multi-attribute diagnosis of flood-bearing bodies was achieved. The Jinshui District of Zhengzhou, China, is selected as the study area. The results show: (1) Predictions of urban functional zone categories in four other districts of Zhengzhou showed an average accuracy rate of 78.5 % through random sampling point validation. The threshold effect of prediction accuracy at different scales was significant. (2) Simulated flood economic losses for recurrence intervals of 1 year, 5 years, 10 years, 20 years, 50 years, and 100 years exhibited an exponential growth trend. (3) The multiple flood-bearing attributes of each flooded grid can be diagnosed. Finally, the model was effectively verified by simulating and comparing historical data from the “7·20” flood event in Zhengzhou.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.