{"title":"Verifying the reliability of CFD domain decomposition technique on modelling the airflow field inside a naturally ventilated cattle barn","authors":"","doi":"10.1016/j.biosystemseng.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Conventionally, the airflow fields outside and inside the naturally ventilated livestock buildings are modelled simultaneously in one computational domain using CFD (Computational Fluid Dynamics). The presence of surrounding buildings, indoor facilities and animals for large scale cattle barns make the required computational power extremely high and even unfordable to achieve simulation results with reasonable accuracy. The Domain Decomposition Technique (DDT), dividing simulations into two separate steps, is an alternative CFD framework to provide sufficient accuracy with affordable computations at each step. The objective of this study was to verify the reliability of DDT on modelling the airflow fields inside a naturally ventilated cattle barn (NVCB) by employing wind tunnel measurements. The exterior airflow fields around the targeted NVCB, which was opened with varying opening ratios, were first simulated to obtain the airflow boundary conditions at sidewall openings by applying exterior wind conditions at the inlet of the computational domain. The interior airflow of the targeted NVCB, were secondly simulated by applying the achieved airflow boundary conditions at sidewall openings from the first step simulation. The interior airflow fields obtained by DDT were in good agreement with wind tunnel measurements. This indicates that DDT can provide an alternative for CFD application in large-scale NVCB with presence of surrounding buildings, indoor facilities and animals, though these had not been considered in this study.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024002265","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Conventionally, the airflow fields outside and inside the naturally ventilated livestock buildings are modelled simultaneously in one computational domain using CFD (Computational Fluid Dynamics). The presence of surrounding buildings, indoor facilities and animals for large scale cattle barns make the required computational power extremely high and even unfordable to achieve simulation results with reasonable accuracy. The Domain Decomposition Technique (DDT), dividing simulations into two separate steps, is an alternative CFD framework to provide sufficient accuracy with affordable computations at each step. The objective of this study was to verify the reliability of DDT on modelling the airflow fields inside a naturally ventilated cattle barn (NVCB) by employing wind tunnel measurements. The exterior airflow fields around the targeted NVCB, which was opened with varying opening ratios, were first simulated to obtain the airflow boundary conditions at sidewall openings by applying exterior wind conditions at the inlet of the computational domain. The interior airflow of the targeted NVCB, were secondly simulated by applying the achieved airflow boundary conditions at sidewall openings from the first step simulation. The interior airflow fields obtained by DDT were in good agreement with wind tunnel measurements. This indicates that DDT can provide an alternative for CFD application in large-scale NVCB with presence of surrounding buildings, indoor facilities and animals, though these had not been considered in this study.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.