{"title":"Time aggregation of mixed causal–noncausal models","authors":"Sean Telg","doi":"10.1016/j.econlet.2024.112019","DOIUrl":null,"url":null,"abstract":"<div><div>We study systematic and flow aggregation of mixed causal-noncausal autoregressive models. We show that aggregation preserves noncausality and generates a moving average component. Monte Carlo simulations demonstrate that backward- and forward-looking behavior can be identified empirically for sufficiently large samples.</div></div>","PeriodicalId":11468,"journal":{"name":"Economics Letters","volume":"244 ","pages":"Article 112019"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176524005032","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study systematic and flow aggregation of mixed causal-noncausal autoregressive models. We show that aggregation preserves noncausality and generates a moving average component. Monte Carlo simulations demonstrate that backward- and forward-looking behavior can be identified empirically for sufficiently large samples.
期刊介绍:
Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Economics Letters has been conceived and designed outside the realm of the traditional economics journal. As a Letters Journal, it consists of concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.