Chengjie Dai , Tiantian Song , Qiang Chen , Hanshen Gong , Bowei Yang , Guanghua Song
{"title":"FSIC: Frequency-separated image compression for small object detection","authors":"Chengjie Dai , Tiantian Song , Qiang Chen , Hanshen Gong , Bowei Yang , Guanghua Song","doi":"10.1016/j.dsp.2024.104822","DOIUrl":null,"url":null,"abstract":"<div><div>The existing image compression methods are designed for the human visual system. They can achieve good compression quality for low-frequency components of the image that are important to human vision. However, for object detection models, both high and low-frequency components are essential. As a result, the detection metrics on the compressed images obtained by current methods will decline. Particularly for small object detection, the lack of high-frequency signals makes it difficult to distinguish the targets from the background. In this paper, we propose a frequency-separated image compression model, named FSIC. During the training process, the compression of low-frequency components only employs MSE loss, while the compression of high-frequency components additionally incorporates a detection loss. We validate FSIC's image compression capability for the small object detection task on the VisDrone dataset and Dota dataset. Results show that under extremely high compression rates, FSIC demonstrates a better performance compared with current compression methods. Furthermore, FSIC has the fastest encoding speed among current learning-based compression models.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104822"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004470","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The existing image compression methods are designed for the human visual system. They can achieve good compression quality for low-frequency components of the image that are important to human vision. However, for object detection models, both high and low-frequency components are essential. As a result, the detection metrics on the compressed images obtained by current methods will decline. Particularly for small object detection, the lack of high-frequency signals makes it difficult to distinguish the targets from the background. In this paper, we propose a frequency-separated image compression model, named FSIC. During the training process, the compression of low-frequency components only employs MSE loss, while the compression of high-frequency components additionally incorporates a detection loss. We validate FSIC's image compression capability for the small object detection task on the VisDrone dataset and Dota dataset. Results show that under extremely high compression rates, FSIC demonstrates a better performance compared with current compression methods. Furthermore, FSIC has the fastest encoding speed among current learning-based compression models.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,