Debiased hybrid contrastive learning with hard negative mining for unsupervised person re-identification

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-10-21 DOI:10.1016/j.dsp.2024.104826
Yu Zhao , Qiaoyuan Shu
{"title":"Debiased hybrid contrastive learning with hard negative mining for unsupervised person re-identification","authors":"Yu Zhao ,&nbsp;Qiaoyuan Shu","doi":"10.1016/j.dsp.2024.104826","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of unsupervised person re-identification is to retrieve a specific person across several non-overlapping cameras without the aid of manual labeling information. In recent times, contrastive learning has found extensive application in undertaking the complexities of unsupervised person Re-ID. Nevertheless, prevailing approaches often ignore the bias in negative proxy sampling and the significance of hard negatives in contrastive learning. These limitations have constrained the performance of existing methods. To solve these issues, we introduce a Debiased Hybrid Contrastive Learning with Hard Negative Mining (DHCL-HNM) approach. Particularly, the proposed approach employs an instance-level memory bank to save the class prototypes for all training images. In each training epoch, the memory bank undergoes clustering, dividing the dataset into un-clustered outliers and clustered images with pseudo labels. Then, the debiasing of negative proxies and the hard negative mining are integrated into a hybrid contrastive learning process to enhance the intra-class similarity and the instance discrimination. The debiasing operation is realized during the sampling of negative proxies to reduce the negative effects of false negatives. In the meantime, the hard negative mining can guide the Re-ID model to concentrate on the hard negatives by reweighting negative proxies based on their similarities to the anchor sample. The efficiency of the proposed method in the realm of unsupervised person Re-ID is demonstrated through comprehensive experiment outcomes conducted on several datasets.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104826"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004512","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of unsupervised person re-identification is to retrieve a specific person across several non-overlapping cameras without the aid of manual labeling information. In recent times, contrastive learning has found extensive application in undertaking the complexities of unsupervised person Re-ID. Nevertheless, prevailing approaches often ignore the bias in negative proxy sampling and the significance of hard negatives in contrastive learning. These limitations have constrained the performance of existing methods. To solve these issues, we introduce a Debiased Hybrid Contrastive Learning with Hard Negative Mining (DHCL-HNM) approach. Particularly, the proposed approach employs an instance-level memory bank to save the class prototypes for all training images. In each training epoch, the memory bank undergoes clustering, dividing the dataset into un-clustered outliers and clustered images with pseudo labels. Then, the debiasing of negative proxies and the hard negative mining are integrated into a hybrid contrastive learning process to enhance the intra-class similarity and the instance discrimination. The debiasing operation is realized during the sampling of negative proxies to reduce the negative effects of false negatives. In the meantime, the hard negative mining can guide the Re-ID model to concentrate on the hard negatives by reweighting negative proxies based on their similarities to the anchor sample. The efficiency of the proposed method in the realm of unsupervised person Re-ID is demonstrated through comprehensive experiment outcomes conducted on several datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对无监督人员再识别的有偏差混合对比学习与硬负挖掘
无监督人员再识别的目标是在不借助人工标注信息的情况下,在多个非重叠摄像头中检索出一个特定的人。近来,对比学习已被广泛应用于处理复杂的无监督人员再识别问题。然而,目前流行的方法往往忽略了负代理采样的偏差以及对比学习中硬负值的重要性。这些局限性制约了现有方法的性能。为了解决这些问题,我们引入了一种带有硬否定挖掘的去偏差混合对比学习(DHCL-HNM)方法。特别是,所提出的方法采用了实例级存储库来保存所有训练图像的类原型。在每次训练中,记忆库都会进行聚类,将数据集分为未聚类的异常值和带有伪标签的聚类图像。然后,在混合对比学习过程中整合了负面代理去除法和硬负面挖掘法,以增强类内相似性和实例区分度。去重操作是在负代理采样过程中实现的,以减少假否定的负面影响。同时,硬否定挖掘可以引导 Re-ID 模型根据否定代理与锚样本的相似性进行重新加权,从而集中处理硬否定。通过在多个数据集上进行的综合实验结果,证明了所提出的方法在无监督人员再识别领域的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Adaptive polarimetric persymmetric detection for distributed subspace targets in lognormal texture clutter MFFR-net: Multi-scale feature fusion and attentive recalibration network for deep neural speech enhancement PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8 Efficient recurrent real video restoration IGGCN: Individual-guided graph convolution network for pedestrian trajectory prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1