Sheng-guo XUE , Jing-pei FENG , Wen-shun KE , Mu LI , Kun-yan QIU , Chu-xuan LI , Chuan WU , Lin GUO
{"title":"Rapid detection and risk assessment of soil contamination at lead smelting site based on machine learning","authors":"Sheng-guo XUE , Jing-pei FENG , Wen-shun KE , Mu LI , Kun-yan QIU , Chu-xuan LI , Chuan WU , Lin GUO","doi":"10.1016/S1003-6326(24)66595-7","DOIUrl":null,"url":null,"abstract":"<div><div>A general prediction model for seven heavy metals was established using the heavy metal contents of 207 soil samples measured by a portable X-ray fluorescence spectrometer (XRF) and six environmental factors as model correction coefficients. The eXtreme Gradient Boosting (XGBoost) model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site. The results demonstrated that the generalized prediction model developed for Pb, Cd, and As was highly accurate with fitted coefficients (<em>R</em><sup>2</sup>) values of 0.911, 0.950, and 0.835, respectively. Topsoil presented the highest ecological risk, and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd. Generally, the application of machine learning significantly increased the accuracy of pXRF measurements, and identified key environmental factors. The adapted potential ecological risk assessment emphasized the need to focus on Pb, Cd, and As in future site remediation efforts.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 9","pages":"Pages 3054-3068"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665957","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A general prediction model for seven heavy metals was established using the heavy metal contents of 207 soil samples measured by a portable X-ray fluorescence spectrometer (XRF) and six environmental factors as model correction coefficients. The eXtreme Gradient Boosting (XGBoost) model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site. The results demonstrated that the generalized prediction model developed for Pb, Cd, and As was highly accurate with fitted coefficients (R2) values of 0.911, 0.950, and 0.835, respectively. Topsoil presented the highest ecological risk, and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd. Generally, the application of machine learning significantly increased the accuracy of pXRF measurements, and identified key environmental factors. The adapted potential ecological risk assessment emphasized the need to focus on Pb, Cd, and As in future site remediation efforts.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.