Yin-yi LUO , Hao-zhang LIANG , Ping ZHANG , Lei HAN , Qian ZHANG , Li-dan LIU , Zhi-wei LUO , Tian-xiang NING , An-xian LU
{"title":"Effect of sintering temperature and holding time on structure and properties of Li1.5Ga0.5Ti1.5(PO4)3 electrolyte with fast ionic conductivity","authors":"Yin-yi LUO , Hao-zhang LIANG , Ping ZHANG , Lei HAN , Qian ZHANG , Li-dan LIU , Zhi-wei LUO , Tian-xiang NING , An-xian LU","doi":"10.1016/S1003-6326(24)66588-X","DOIUrl":null,"url":null,"abstract":"<div><div>Li<sub>1.5</sub>Ga<sub>0.5</sub>Ti<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LGTP) is recognized as a promising solid electrolyte material for lithium ions. In this work, LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density, phase composition, microstructure, bulk conductivity, and total conductivity. In the impedance test under frequency of 1−10<sup>6</sup> Hz, the bulk conductivity of the samples increased with increasing sintering temperature, and the total conductivity first increased and then decreased. SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature, which increased from (0.54±0.01) μm to (1.21±0.01) μm when the temperature changed from 750 to 950 °C. The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased. The holding time had little effect on the grain size growth or sample density, but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 9","pages":"Pages 2959-2971"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100363262466588X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Li1.5Ga0.5Ti1.5(PO4)3 (LGTP) is recognized as a promising solid electrolyte material for lithium ions. In this work, LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density, phase composition, microstructure, bulk conductivity, and total conductivity. In the impedance test under frequency of 1−106 Hz, the bulk conductivity of the samples increased with increasing sintering temperature, and the total conductivity first increased and then decreased. SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature, which increased from (0.54±0.01) μm to (1.21±0.01) μm when the temperature changed from 750 to 950 °C. The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased. The holding time had little effect on the grain size growth or sample density, but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.