C.J. Ann Mary , Devipriya Vasudevan , Prasiddha Nagarajan , S. Suhas , Ajesh Vijayan , K.V. Radhakrishnan , Y.N. Sudhakar
{"title":"An extensive review on transition metal catalyzed indole CH activation: Catalyst selection and mechanistic insights","authors":"C.J. Ann Mary , Devipriya Vasudevan , Prasiddha Nagarajan , S. Suhas , Ajesh Vijayan , K.V. Radhakrishnan , Y.N. Sudhakar","doi":"10.1016/j.poly.2024.117260","DOIUrl":null,"url":null,"abstract":"<div><div>The present review article explores the expansive synthetic methodologies facilitated by C<img>H activation of indoles using transition metal catalysts. The strategic utilization of catalysts such as palladium, rhodium, iridium, ruthenium, and manganese has revolutionized organic synthesis by enabling selective alkynylation, acylation, and annulation reactions. These transformations are pivotal in pharmaceuticals, particularly in the synthesis of antihistamines and potential antiviral drugs against SARS-CoV-2. Additionally, these catalysts play a crucial role in perfumery and other chemical industries, enhancing the efficiency and precision of compound synthesis. The choice of transition metal catalysts is informed by their affordability and compatibility with both traditional analytical methods and innovative techniques like microwave synthesis and LED irradiation. Furthermore, this review underscores the interdisciplinary impact of transition metal-catalyzed C<img>H activation on indoles, highlighting its significance in advancing both fundamental organic chemistry and applied sciences essential for modern technological advancements and drug discovery efforts.</div></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":"264 ","pages":"Article 117260"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724004364","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The present review article explores the expansive synthetic methodologies facilitated by CH activation of indoles using transition metal catalysts. The strategic utilization of catalysts such as palladium, rhodium, iridium, ruthenium, and manganese has revolutionized organic synthesis by enabling selective alkynylation, acylation, and annulation reactions. These transformations are pivotal in pharmaceuticals, particularly in the synthesis of antihistamines and potential antiviral drugs against SARS-CoV-2. Additionally, these catalysts play a crucial role in perfumery and other chemical industries, enhancing the efficiency and precision of compound synthesis. The choice of transition metal catalysts is informed by their affordability and compatibility with both traditional analytical methods and innovative techniques like microwave synthesis and LED irradiation. Furthermore, this review underscores the interdisciplinary impact of transition metal-catalyzed CH activation on indoles, highlighting its significance in advancing both fundamental organic chemistry and applied sciences essential for modern technological advancements and drug discovery efforts.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.