Han Liu , Xiao-Lin Liu , Hao Wang , Yang Liu , Xin-Tao Wu , Tian-Lu Sheng
{"title":"Influence of ligand donation on charge transfer properties of cyanido-bridged binuclear Fe-Ru complexes","authors":"Han Liu , Xiao-Lin Liu , Hao Wang , Yang Liu , Xin-Tao Wu , Tian-Lu Sheng","doi":"10.1016/j.poly.2025.117442","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate how the electron-donating ability of the ligand influence the metal-to-metal charge transfer (MMCT) in mixed-valence (MV) systems, a series of asymmetric binuclear cyanido-bridged complexes CpMe<sub>x</sub>(dppe)FeCNRu(bimpy)(PPh<sub>3</sub>)(NCCH<sub>3</sub>), <strong>N[PF<sub>6</sub>]<sub>2</sub></strong> (x = 1, 3, 4, 5; N = <strong>1</strong>, <strong>2</strong>, <strong>3</strong>, <strong>4</strong>; CpMe = methylcyclopentadiene; CpMe<sub>3</sub> = 1, 2, 4-trimethyl-cyclopentadiene; CpMe<sub>4</sub> = 1, 2, 3, 4-tetramethyl-cyclopentadienyl; CpMe<sub>5</sub> = 1, 2, 3, 4, 5-pentamethyl-cyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; bimpy = 2, 6-Bis(benzimidazol-2-yl)pyridine; PPh<sub>3</sub> = triphenylphosphine), along with their one-electron oxidized products <strong>N[PF<sub>6</sub>]<sub>3</sub></strong> were synthesized and well characterized. In these MV systems, significant electronic interactions between the two metal centers were revealed by electrochemistry, crystallography, FTIR, UV–vis-NIR, and supported by the DFT calculations. The results showed that the MM’CT energy from the Ru<sup>II</sup> to the Fe<sup>III</sup> increases as the electron-donating ability of the CpMe<sub>X</sub> ligands was enhanced with the addition of methyl substituents. Meanwhile, all the one-electron oxidized products <strong>N[PF<sub>6</sub>]<sub>3</sub></strong> belong to Class II systems.</div></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":"271 ","pages":"Article 117442"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538725000567","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate how the electron-donating ability of the ligand influence the metal-to-metal charge transfer (MMCT) in mixed-valence (MV) systems, a series of asymmetric binuclear cyanido-bridged complexes CpMex(dppe)FeCNRu(bimpy)(PPh3)(NCCH3), N[PF6]2 (x = 1, 3, 4, 5; N = 1, 2, 3, 4; CpMe = methylcyclopentadiene; CpMe3 = 1, 2, 4-trimethyl-cyclopentadiene; CpMe4 = 1, 2, 3, 4-tetramethyl-cyclopentadienyl; CpMe5 = 1, 2, 3, 4, 5-pentamethyl-cyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; bimpy = 2, 6-Bis(benzimidazol-2-yl)pyridine; PPh3 = triphenylphosphine), along with their one-electron oxidized products N[PF6]3 were synthesized and well characterized. In these MV systems, significant electronic interactions between the two metal centers were revealed by electrochemistry, crystallography, FTIR, UV–vis-NIR, and supported by the DFT calculations. The results showed that the MM’CT energy from the RuII to the FeIII increases as the electron-donating ability of the CpMeX ligands was enhanced with the addition of methyl substituents. Meanwhile, all the one-electron oxidized products N[PF6]3 belong to Class II systems.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.