{"title":"Numerical simulation of molten pool flow behavior in ultrasonic vibration-assisted gas tungsten arc welding of low-alloy high-strength steel","authors":"","doi":"10.1016/j.cirpj.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>The beneficial effects of ultrasonic vibration-assisted arc welding on the performance of welded joints have been experimentally confirmed. However, the mechanism of the influence of ultrasonic vibration on the temperature and flow fields of the welding pool is still not clear, which also limits further application prospects of this technology. The present study established a three-dimensional molten pool model for ultrasonic vibration-assisted gas tungsten arc (UV-GTA) welding of low-alloy high-strength steel, considering free deformation of the molten pool surface and different ultrasonic vibration amplitudes. The temperature field evolution and the molten pool flow behavior under various ultrasonic vibration amplitudes were systematically analyzed. Compared with GTA welding, the ultrasonic vibration in UV-GTA welding enhanced uniformity of the temperature distribution in molten pool. Moreover, the larger the ultrasonic amplitude in UV-GTA welding, the smaller the depth of the molten pool and the time required for the molten pool to reach a quasi-steady state, but the larger the maximum flow rate at the surface as well as at the center of the molten pool. At an ultrasonic vibration amplitude of 40 µm, the molten pool depth in UV-GTA welding decreased by 34.8 % compared with GTA molten pool depth. The time for this UV-GTA molten pool to reach a quasi-steady state was just 0.57 s, and the maximum velocity at its center increased by 88.1 % over that of the GTA molten pool. Comparative analysis of the UV-GTA molten pool and the GTA molten pool revealed a shorter circulating flow field on the upper surface and periodic variations in the internal flow field motion. The simulation outcomes closely align with the experimental findings, confirming both the validity of the model and the accuracy of the pertinent conclusions. This research may lay a solid theoretical foundation for further systematic exploration of the wider application prospects of ultrasonic vibration-assisted arc welding.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001664","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The beneficial effects of ultrasonic vibration-assisted arc welding on the performance of welded joints have been experimentally confirmed. However, the mechanism of the influence of ultrasonic vibration on the temperature and flow fields of the welding pool is still not clear, which also limits further application prospects of this technology. The present study established a three-dimensional molten pool model for ultrasonic vibration-assisted gas tungsten arc (UV-GTA) welding of low-alloy high-strength steel, considering free deformation of the molten pool surface and different ultrasonic vibration amplitudes. The temperature field evolution and the molten pool flow behavior under various ultrasonic vibration amplitudes were systematically analyzed. Compared with GTA welding, the ultrasonic vibration in UV-GTA welding enhanced uniformity of the temperature distribution in molten pool. Moreover, the larger the ultrasonic amplitude in UV-GTA welding, the smaller the depth of the molten pool and the time required for the molten pool to reach a quasi-steady state, but the larger the maximum flow rate at the surface as well as at the center of the molten pool. At an ultrasonic vibration amplitude of 40 µm, the molten pool depth in UV-GTA welding decreased by 34.8 % compared with GTA molten pool depth. The time for this UV-GTA molten pool to reach a quasi-steady state was just 0.57 s, and the maximum velocity at its center increased by 88.1 % over that of the GTA molten pool. Comparative analysis of the UV-GTA molten pool and the GTA molten pool revealed a shorter circulating flow field on the upper surface and periodic variations in the internal flow field motion. The simulation outcomes closely align with the experimental findings, confirming both the validity of the model and the accuracy of the pertinent conclusions. This research may lay a solid theoretical foundation for further systematic exploration of the wider application prospects of ultrasonic vibration-assisted arc welding.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.