{"title":"A structured digital twinning approach to improve decision-making in manufacturing SMEs","authors":"Maaike Slot , Roy Damgrave , Eric Lutters","doi":"10.1016/j.cirpj.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>Companies aim to adapt their shopfloors to increase the efficiency and effectiveness of their production activities, adding value to their shopfloor. However, it has become increasingly challenging to obtain an accurate and comprehensive overview of the shop floor and organisation, leading to difficulties in making operational, tactical, and strategic decisions. Existing methods to support such companies either restrict access to information or pre-determine the perspectives on the information for decision-making. This research employs a research-by-design approach to develop the digital twinning approach that can facilitate companies to develop a solution that can provide the appropriate information at the right moment and in the right perspective. To structure the digital twinning approach, key functions in the approach are outlined in a functional architecture. Two case studies demonstrate and verify the applicability and added value of the architecture in developing an information provisioning solution. The positive outcomes and experiences from these case studies highlight the potential of the digital twinning approach to facilitate companies in developing adaptable and company-specific solutions to enhance decision-making processes.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"55 ","pages":"Pages 359-374"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001640","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Companies aim to adapt their shopfloors to increase the efficiency and effectiveness of their production activities, adding value to their shopfloor. However, it has become increasingly challenging to obtain an accurate and comprehensive overview of the shop floor and organisation, leading to difficulties in making operational, tactical, and strategic decisions. Existing methods to support such companies either restrict access to information or pre-determine the perspectives on the information for decision-making. This research employs a research-by-design approach to develop the digital twinning approach that can facilitate companies to develop a solution that can provide the appropriate information at the right moment and in the right perspective. To structure the digital twinning approach, key functions in the approach are outlined in a functional architecture. Two case studies demonstrate and verify the applicability and added value of the architecture in developing an information provisioning solution. The positive outcomes and experiences from these case studies highlight the potential of the digital twinning approach to facilitate companies in developing adaptable and company-specific solutions to enhance decision-making processes.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.