Synthesis of a gallic acid-based self-healing waterborne polyurethane with a thermo-responsive dynamic phenol-carbamate network for enhanced mechanical strength, antimicrobial activity, and shape memory properties
Yuan Wang , Nan Wang , Pingbo Zhang , Pingping Jiang , Jialiang Xia , Xuewen Gao , Yanmin Bao
{"title":"Synthesis of a gallic acid-based self-healing waterborne polyurethane with a thermo-responsive dynamic phenol-carbamate network for enhanced mechanical strength, antimicrobial activity, and shape memory properties","authors":"Yuan Wang , Nan Wang , Pingbo Zhang , Pingping Jiang , Jialiang Xia , Xuewen Gao , Yanmin Bao","doi":"10.1016/j.porgcoat.2024.108878","DOIUrl":null,"url":null,"abstract":"<div><div>To expedite the advancement of multifunctional next-generation smart materials, it is imperative to create polymers derived from renewable, green bio-based resources. This paper presents a direct synthesis of thermo-responsive aqueous polyurethanes by combining gallic acid (GA) with isocyanate groups to form a dynamic phenol-carbamate crosslinked network and the incorporation of the metal-organic framework Cu-MOF-2 for synergistic effects. The resulting GA-based polyurethane (MOF-GWPU) exhibits excellent thermal stability and mechanical properties, achieving an ideal balance between mechanical strength and self-healing efficiency. The MOF-GWPU film demonstrates strong antimicrobial efficacy against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, highlighting its exceptional antibacterial performance. The thermo-responsive dynamic covalent bonds enable the MOF-GWPU film to rapidly revert from a temporary shape back to its original form. Post-processing experiments further indicate that the crosslinked GA-PU polymer can be efficiently recycled through solution casting and hot-pressing techniques. This design offers a novel approach and valuable insights for advancing the development of multifunctional smart polymers derived from bio-based resources.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"197 ","pages":"Article 108878"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024006702","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To expedite the advancement of multifunctional next-generation smart materials, it is imperative to create polymers derived from renewable, green bio-based resources. This paper presents a direct synthesis of thermo-responsive aqueous polyurethanes by combining gallic acid (GA) with isocyanate groups to form a dynamic phenol-carbamate crosslinked network and the incorporation of the metal-organic framework Cu-MOF-2 for synergistic effects. The resulting GA-based polyurethane (MOF-GWPU) exhibits excellent thermal stability and mechanical properties, achieving an ideal balance between mechanical strength and self-healing efficiency. The MOF-GWPU film demonstrates strong antimicrobial efficacy against Escherichia coli and Staphylococcus aureus, highlighting its exceptional antibacterial performance. The thermo-responsive dynamic covalent bonds enable the MOF-GWPU film to rapidly revert from a temporary shape back to its original form. Post-processing experiments further indicate that the crosslinked GA-PU polymer can be efficiently recycled through solution casting and hot-pressing techniques. This design offers a novel approach and valuable insights for advancing the development of multifunctional smart polymers derived from bio-based resources.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.