Mohammad Marjani , Fariba Mohammadimanesh , Daniel J. Varon , Ali Radman , Masoud Mahdianpari
{"title":"PRISMethaNet: A novel deep learning model for landfill methane detection using PRISMA satellite data","authors":"Mohammad Marjani , Fariba Mohammadimanesh , Daniel J. Varon , Ali Radman , Masoud Mahdianpari","doi":"10.1016/j.isprsjprs.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Methane (CH4) is one of the most significant greenhouse gases responsible for about one-third of climate warming since preindustrial times, originating from various sources. Landfills are responsible for a large percentage of CH4 emissions, and population growth can boost these emissions. Therefore, it is vital to automate the process of CH4 monitoring over landfills. This study proposes a convolutional neural network (CNN) with an Atrous Spatial Pyramid Pooling (ASPP) mechanism, called PRISMethaNet, to automate the CH4 detection process using PRISMA satellite data in the 400–2500 nm spectral range. A total number of 41 PRISMA images from 17 landfill sites located in several countries, such as India, Nigeria, Mexico, Pakistan, Iran, and other regions, were used as our study areas. The PRISMethaNet model was trained using augmented data as the input, and plume masks were obtained from the matched filter (MF) algorithm. This novel proposed model successfully detected plumes with overall accuracy (OA), F1-score (F1), precision, and recall of 0.99, 0.96, 0.93, and 0.99, respectively, and quantification uncertainties ranging from 11 % to 58 %. An unboxing of the ASPP module using Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm demonstrated a strong relationship between larger dilation rates (DRs) and CH4 plume detectability. Importantly, the results highlighted that plume masks obtained by PRISMethaNet provided more accurate CH4 quantification rate compared to the statistical methods used in previous studies. In particular, the mean square error (MSE) for PRISMethaNet was approximately 1,102 kg/h, whereas the MSE for the commonly used statistical method was around 1,974 kg/h.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 802-818"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003800","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methane (CH4) is one of the most significant greenhouse gases responsible for about one-third of climate warming since preindustrial times, originating from various sources. Landfills are responsible for a large percentage of CH4 emissions, and population growth can boost these emissions. Therefore, it is vital to automate the process of CH4 monitoring over landfills. This study proposes a convolutional neural network (CNN) with an Atrous Spatial Pyramid Pooling (ASPP) mechanism, called PRISMethaNet, to automate the CH4 detection process using PRISMA satellite data in the 400–2500 nm spectral range. A total number of 41 PRISMA images from 17 landfill sites located in several countries, such as India, Nigeria, Mexico, Pakistan, Iran, and other regions, were used as our study areas. The PRISMethaNet model was trained using augmented data as the input, and plume masks were obtained from the matched filter (MF) algorithm. This novel proposed model successfully detected plumes with overall accuracy (OA), F1-score (F1), precision, and recall of 0.99, 0.96, 0.93, and 0.99, respectively, and quantification uncertainties ranging from 11 % to 58 %. An unboxing of the ASPP module using Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm demonstrated a strong relationship between larger dilation rates (DRs) and CH4 plume detectability. Importantly, the results highlighted that plume masks obtained by PRISMethaNet provided more accurate CH4 quantification rate compared to the statistical methods used in previous studies. In particular, the mean square error (MSE) for PRISMethaNet was approximately 1,102 kg/h, whereas the MSE for the commonly used statistical method was around 1,974 kg/h.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.