Imen Nouioui , Judith Boldt , Alina Zimmermann , Roman Makitrynskyy , Gabriele Pötter , Marlen Jando , Meike Döppner , Sarah Kirstein , Meina Neumann-Schaal , Juan Pablo Gomez-Escribano , Ulrich Nübel , Yvonne Mast
{"title":"Biotechnological and pharmaceutical potential of twenty-eight novel type strains of Actinomycetes from different environments worldwide","authors":"Imen Nouioui , Judith Boldt , Alina Zimmermann , Roman Makitrynskyy , Gabriele Pötter , Marlen Jando , Meike Döppner , Sarah Kirstein , Meina Neumann-Schaal , Juan Pablo Gomez-Escribano , Ulrich Nübel , Yvonne Mast","doi":"10.1016/j.crmicr.2024.100290","DOIUrl":null,"url":null,"abstract":"<div><div>Actinomycetes are a prolific source of bioactive natural compounds many of which are used as antibiotics or other drugs. In this study we investigated the genomic and biochemical diversity of 32 actinobacterial strains that had been deposited at the DSMZ–German Collection of Microorganisms and Cell Cultures decades ago. Genome-based phylogeny and <em>in silico</em> DNA-DNA hybridization supported the assignment of these strains to 26 novel species and two novel subspecies and a reclassification of a <em>Streptomyces</em> species. These results were consistent with the biochemical, enzymatic, and chemotaxonomic features of the strains. Most of the strains showed antimicrobial activities against a range of Gram-positive and Gram-negative bacteria, and against yeast. Genomic analysis revealed the presence of numerous unique biosynthetic gene clusters (BGCs) encoding for potential novel antibiotic and anti-cancer compounds. Strains DSM 41636<sup>T</sup> and DSM 61640<sup>T</sup> produced the antibiotic compounds A33853 and SF2768, respectively. Overall, this reflects the significant pharmaceutical and biotechnological potential of the proposed novel type strains and underlines the role of prokaryotic systematics for drug discovery. In order to compensate for the gender gap in naming prokaryotic species, we propose the eponyms for all newly described species to honour female scientists.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"7 ","pages":"Article 100290"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517424000737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Actinomycetes are a prolific source of bioactive natural compounds many of which are used as antibiotics or other drugs. In this study we investigated the genomic and biochemical diversity of 32 actinobacterial strains that had been deposited at the DSMZ–German Collection of Microorganisms and Cell Cultures decades ago. Genome-based phylogeny and in silico DNA-DNA hybridization supported the assignment of these strains to 26 novel species and two novel subspecies and a reclassification of a Streptomyces species. These results were consistent with the biochemical, enzymatic, and chemotaxonomic features of the strains. Most of the strains showed antimicrobial activities against a range of Gram-positive and Gram-negative bacteria, and against yeast. Genomic analysis revealed the presence of numerous unique biosynthetic gene clusters (BGCs) encoding for potential novel antibiotic and anti-cancer compounds. Strains DSM 41636T and DSM 61640T produced the antibiotic compounds A33853 and SF2768, respectively. Overall, this reflects the significant pharmaceutical and biotechnological potential of the proposed novel type strains and underlines the role of prokaryotic systematics for drug discovery. In order to compensate for the gender gap in naming prokaryotic species, we propose the eponyms for all newly described species to honour female scientists.