Rayleigh wave ellipticity from ambient noise: A practical method for monitoring seismic velocity variations in the near-surface

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Engineering Geology Pub Date : 2024-10-19 DOI:10.1016/j.enggeo.2024.107768
Helena Seivane , Martin Schimmel , David Martí , Pilar Sánchez-Pastor
{"title":"Rayleigh wave ellipticity from ambient noise: A practical method for monitoring seismic velocity variations in the near-surface","authors":"Helena Seivane ,&nbsp;Martin Schimmel ,&nbsp;David Martí ,&nbsp;Pilar Sánchez-Pastor","doi":"10.1016/j.enggeo.2024.107768","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the feasibility and limitations of using Rayleigh wave (Rg) ellipticity for noise-based seismic monitoring at near-surface depths (4–70 m). We use the degree of polarization (DOP) method to extract the Rayleigh wave ellipticity from seismic noise recordings, employing normalized cross-correlation and cross-covariance coefficients to quantify ellipticity variations over time. Synthetic models and field data from three distinct case studies—Garner Valley, California; Riotinto mine, Spain; and the 2011 submarine volcanic eruption on El Hierro Island, Canary Islands—validate our approach. In these field applications, our method effectively tracks the seasonality of the shallow groundwater levels in Garner Valley, monitors pore pressure variations at the tailings dam of Riotinto mine, and detects volcanic induced changes on El Hierro, demonstrating robust performance even with variable noise sources. Our results indicate that Rayleigh wave ellipticity is a versatile tool for subsurface monitoring, capable of detecting velocity changes across a broad depth range. Our methodology represents a new independent and non-interferometric approach that enhances the detection of subsurface changes while improving resolution and exploration depth in seismic monitoring techniques.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"343 ","pages":"Article 107768"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003685","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the feasibility and limitations of using Rayleigh wave (Rg) ellipticity for noise-based seismic monitoring at near-surface depths (4–70 m). We use the degree of polarization (DOP) method to extract the Rayleigh wave ellipticity from seismic noise recordings, employing normalized cross-correlation and cross-covariance coefficients to quantify ellipticity variations over time. Synthetic models and field data from three distinct case studies—Garner Valley, California; Riotinto mine, Spain; and the 2011 submarine volcanic eruption on El Hierro Island, Canary Islands—validate our approach. In these field applications, our method effectively tracks the seasonality of the shallow groundwater levels in Garner Valley, monitors pore pressure variations at the tailings dam of Riotinto mine, and detects volcanic induced changes on El Hierro, demonstrating robust performance even with variable noise sources. Our results indicate that Rayleigh wave ellipticity is a versatile tool for subsurface monitoring, capable of detecting velocity changes across a broad depth range. Our methodology represents a new independent and non-interferometric approach that enhances the detection of subsurface changes while improving resolution and exploration depth in seismic monitoring techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自环境噪声的瑞利波椭圆度:监测近地表地震速度变化的实用方法
本研究探讨了将瑞利波(Rg)椭圆度用于近地表深度(4-70 米)基于噪声的地震监测的可行性和局限性。我们使用极化度(DOP)方法从地震噪声记录中提取瑞利波椭圆度,利用归一化交叉相关和交叉协方差系数量化椭圆度随时间的变化。来自三个不同案例研究的合成模型和现场数据--加利福尼亚州的加纳谷、西班牙的 Riotinto 矿和 2011 年加那利群岛埃尔希耶罗岛的海底火山爆发--验证了我们的方法。在这些实地应用中,我们的方法有效地跟踪了加纳谷浅层地下水水位的季节性变化,监测了 Riotinto 矿尾矿坝的孔隙压力变化,并检测了 El Hierro 岛火山诱发的变化,即使在噪声源可变的情况下也表现出了强大的性能。我们的研究结果表明,瑞利波椭圆度是一种多用途的地下监测工具,能够在广泛的深度范围内探测速度变化。我们的方法代表了一种新的独立非干涉测量方法,可增强对地下变化的探测,同时提高地震监测技术的分辨率和勘探深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
期刊最新文献
In-situ and experimental investigations of the failure characteristics of surrounding rock through granites with biotite interlayers in a tunnel Evolution characteristics of mining-induced fractures in overburden strata under close-multi coal seams mining based on optical fiber monitoring Evaluating the chain of uncertainties in the 3D geological modelling workflow Thermal and mechanical impact of artificial ground-freezing on deep excavation stability in Nakdong River Deltaic deposits Large-scale geohazards risk of submarine landslides considering the subsea cables vulnerability: A case study from the northern continental slopes of South China Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1