Nutrient screening of Chlorella vulgaris and C. variabilis using high-throughput biolog phenotype arrays

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-09 DOI:10.1016/j.algal.2024.103740
Chuchi Chen , Steven M. Short , Valerie C.A. Ward
{"title":"Nutrient screening of Chlorella vulgaris and C. variabilis using high-throughput biolog phenotype arrays","authors":"Chuchi Chen ,&nbsp;Steven M. Short ,&nbsp;Valerie C.A. Ward","doi":"10.1016/j.algal.2024.103740","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgae, particularly <em>Chlorella</em> species, are versatile microorganisms with significant scientific potential in various domains, including recombinant protein production, wastewater treatment, biofuel production, bio-fertilizers, food source, pharmaceuticals, and carbon capture. However, conventional growth media have often been the default choice for <em>Chlorella</em> cultivation. This study utilizes Biolog phenotype array plates to explore the growth responses of <em>Chlorella vulgaris</em> and <em>Chlorella variabilis</em> to a broad spectrum of carbon, nitrogen, phosphorus, and sulfur sources. The growth dynamics were captured by integrating the area under the OD-time curve. The results revealed growth preferences for both <em>Chlorella</em> species, emphasizing their unique nutrient source requirements and illuminated some unexpected growth behaviors. <em>C. vulgaris</em> exhibited equal preference for trehalose as glucose, and <em>C. variabilis</em> was unable to metabolize nitrate or sucrose, two staples of modified BBM media most commonly used for its cultivation. These findings contribute to a deeper understanding of the metabolic capacities of <em>C. vulgaris</em> and <em>C. variabilis</em>, informing potentially more efficient and tailored microalgal cultivation practices across diverse applications.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103740"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424003527","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae, particularly Chlorella species, are versatile microorganisms with significant scientific potential in various domains, including recombinant protein production, wastewater treatment, biofuel production, bio-fertilizers, food source, pharmaceuticals, and carbon capture. However, conventional growth media have often been the default choice for Chlorella cultivation. This study utilizes Biolog phenotype array plates to explore the growth responses of Chlorella vulgaris and Chlorella variabilis to a broad spectrum of carbon, nitrogen, phosphorus, and sulfur sources. The growth dynamics were captured by integrating the area under the OD-time curve. The results revealed growth preferences for both Chlorella species, emphasizing their unique nutrient source requirements and illuminated some unexpected growth behaviors. C. vulgaris exhibited equal preference for trehalose as glucose, and C. variabilis was unable to metabolize nitrate or sucrose, two staples of modified BBM media most commonly used for its cultivation. These findings contribute to a deeper understanding of the metabolic capacities of C. vulgaris and C. variabilis, informing potentially more efficient and tailored microalgal cultivation practices across diverse applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高通量生物表型阵列对普通小球藻和变异小球藻进行营养筛选
微藻类,尤其是小球藻物种,是一种多功能微生物,在重组蛋白质生产、废水处理、生物燃料生产、生物肥料、食物来源、制药和碳捕获等多个领域具有巨大的科研潜力。然而,传统的生长培养基往往是培养小球藻的默认选择。本研究利用 Biolog 表型阵列板来探索小球藻和变异小球藻对各种碳、氮、磷和硫源的生长反应。生长动态是通过整合 OD-时间曲线下的面积来捕捉的。结果显示了两种小球藻的生长偏好,强调了它们对营养源的独特需求,并揭示了一些意想不到的生长行为。C. vulgaris 对三卤糖和葡萄糖表现出同样的偏好,而 C. variabilis 无法代谢硝酸盐或蔗糖,而这两种物质是最常用于其培养的改良 BBM 培养基的主要成分。这些发现有助于加深对 C. vulgaris 和 C. variabilis 新陈代谢能力的了解,从而为更高效、更适合不同应用的微藻培养方法提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
期刊最新文献
Deep sequencing analysis of chloroplast transcription and splicing in Euglena gracilis Genetic transformation of the freshwater diatom Cyclotella meneghiniana via bacterial conjugation Comparison of CRISPR/Cas9 and Cas12a for gene editing in Chlamydomonas reinhardtii Effect of temperature on the oxygen production capacity and growth of scenedesmus almeriensis A multi-dimensional comparative study on the performance of algae removal using various flotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1