{"title":"AI-aided optimisation and technoeconomic analysis of peaker particle-based concentrated solar power","authors":"Philipe Gunawan Gan, Ye Wang, John Pye","doi":"10.1016/j.solener.2024.112966","DOIUrl":null,"url":null,"abstract":"<div><div>Commercial concentrating solar power (CSP) systems depend on the cost-effective use of storage to provide a valuable service to the electricity grid. However, the tailoring of optimised ‘peaker’ systems, within the context of power purchase agreements (PPA) with variable time-of-day (TOD) pricing has received relatively limited attention. In this study, a system-level model of a particle-based CSP systems with nominal power output of 100<!--> <!-->MW˙e is developed with detailed component-level models, a moving-window dispatch optimiser based on linear programming, and AI-based surrogate models of the receiver and power block components to accelerate calculations. The system is optimised for a range of design variables including those for field and tower layout, storage capacity and insulation thickness, for a specified TOD price schedule. System-level optimisation minimises the PPA bid price (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>bid</mi></mrow></msub></math></span>), while the dispatch optimiser maximises the TOD-weighted energy output (<span><math><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>̄</mo></mrow></mover><mi>E</mi></mrow></math></span>). The optimal-dispatch system has a capital cost 32% lower than a system designed for immediate dispatch and minimised levelised cost of energy (LCOE), and dispatches 39% less annual electricity, but achieves an average electricity selling price that is nearly double that of the naive LCOE-optimised system. Although these results are specific to the TOD case considered here, this study highlights an integrated approach to CSP system design for high value in a realistic grid context.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 112966"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24006613","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Commercial concentrating solar power (CSP) systems depend on the cost-effective use of storage to provide a valuable service to the electricity grid. However, the tailoring of optimised ‘peaker’ systems, within the context of power purchase agreements (PPA) with variable time-of-day (TOD) pricing has received relatively limited attention. In this study, a system-level model of a particle-based CSP systems with nominal power output of 100 MW˙e is developed with detailed component-level models, a moving-window dispatch optimiser based on linear programming, and AI-based surrogate models of the receiver and power block components to accelerate calculations. The system is optimised for a range of design variables including those for field and tower layout, storage capacity and insulation thickness, for a specified TOD price schedule. System-level optimisation minimises the PPA bid price (), while the dispatch optimiser maximises the TOD-weighted energy output (). The optimal-dispatch system has a capital cost 32% lower than a system designed for immediate dispatch and minimised levelised cost of energy (LCOE), and dispatches 39% less annual electricity, but achieves an average electricity selling price that is nearly double that of the naive LCOE-optimised system. Although these results are specific to the TOD case considered here, this study highlights an integrated approach to CSP system design for high value in a realistic grid context.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass