Duan Xiong , Zhen Su , Lixin Zhang , Hao Zhang , Zhiwei Su , Xiaoyun Hu , Mailidan Wumaer , Qingqing Guan
{"title":"1D supramolecular assembly-induced emission and colorimetry toward precise onsite mercury(II) detection","authors":"Duan Xiong , Zhen Su , Lixin Zhang , Hao Zhang , Zhiwei Su , Xiaoyun Hu , Mailidan Wumaer , Qingqing Guan","doi":"10.1016/j.snr.2024.100253","DOIUrl":null,"url":null,"abstract":"<div><div>Manipulation of the one-dimensional (1D) supramolecular assembly of platinum(II) terpyridyl complex is promising for achieving precise onsite mercury(II) detection in complex environments, but still challenging. Herein, by systematic molecular design of platinum(II) terpyridyl complex, chloride-mediated 1D supramolecular assembly has been successfully achieved, exhibiting not only improved recognition ability but also dual-visual signal, with turn-on red luminescence and high-contrast color change from pale-yellow to orange-red. The probe also shows excellent selectivity and anti-interference properties, fast response rate (< 1 s) and low detection limit, stretching to 20.6 fg when incorporated in a hydrogel matrix. Structure insight for the dual-visual response shows that this high detection performance derives from the ancillary ligand of -NCS, which endows the increase of ion-association ability between platinum(II) terpyridyl complex and [HgCl<sub>4</sub>]<sup>2−</sup>, leading that 1D packing mode with strengthened Pt-Pt interactions. In all, this work highlights a new strategy of 1D supramolecular assembly construction for high performance detection of heavy metal ions.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100253"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Manipulation of the one-dimensional (1D) supramolecular assembly of platinum(II) terpyridyl complex is promising for achieving precise onsite mercury(II) detection in complex environments, but still challenging. Herein, by systematic molecular design of platinum(II) terpyridyl complex, chloride-mediated 1D supramolecular assembly has been successfully achieved, exhibiting not only improved recognition ability but also dual-visual signal, with turn-on red luminescence and high-contrast color change from pale-yellow to orange-red. The probe also shows excellent selectivity and anti-interference properties, fast response rate (< 1 s) and low detection limit, stretching to 20.6 fg when incorporated in a hydrogel matrix. Structure insight for the dual-visual response shows that this high detection performance derives from the ancillary ligand of -NCS, which endows the increase of ion-association ability between platinum(II) terpyridyl complex and [HgCl4]2−, leading that 1D packing mode with strengthened Pt-Pt interactions. In all, this work highlights a new strategy of 1D supramolecular assembly construction for high performance detection of heavy metal ions.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.