{"title":"Generation of human induced pluripotent stem cell lines derived from two glucose transporter 1 deficiency syndrome patients","authors":"Rui Li , Hazuki Tsuboi , Hidenori Ito , Daigo Takagi , Yun-Hsuan Chang , Tomoya Shimizu , Yutaka Arai , Mami Matsuo-Takasaki , Michiya Noguchi , Yukio Nakamura , Kiyoshi Ohnuma , Satoru Takahashi , Yohei Hayashi","doi":"10.1016/j.scr.2024.103584","DOIUrl":null,"url":null,"abstract":"<div><div>Glucose transporter 1 deficiency syndrome (GLUT1DS), caused by impaired glucose transport at the blood–brain barriers, leads to various central nervous system dysfunctions. A comprehensive understanding of the underlying disease pathogenesis is still lacking. In this study, we have generated GLUT1DS-specific human induced pluripotent stem cells (hiPSCs) derived from two patients. These established GLUT1DS-specific hiPSC lines showed self-renewal and pluripotency and carried heterozygous frameshift or missense mutations in the responsible <em>SLC2A1</em> gene. These novel cell resources provide new avenues for understanding disease mechanisms and developing new therapies for GLUT1DS.</div></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506124002824","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose transporter 1 deficiency syndrome (GLUT1DS), caused by impaired glucose transport at the blood–brain barriers, leads to various central nervous system dysfunctions. A comprehensive understanding of the underlying disease pathogenesis is still lacking. In this study, we have generated GLUT1DS-specific human induced pluripotent stem cells (hiPSCs) derived from two patients. These established GLUT1DS-specific hiPSC lines showed self-renewal and pluripotency and carried heterozygous frameshift or missense mutations in the responsible SLC2A1 gene. These novel cell resources provide new avenues for understanding disease mechanisms and developing new therapies for GLUT1DS.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.