Direct liquefaction behavior of Shenhua Shangwan coal under CO containing atmosphere

Q3 Energy 燃料化学学报 Pub Date : 2024-10-01 DOI:10.1016/S1872-5813(24)60451-2
TANG Bowen, ZHANG Rui, LIU Haiyun, JIN Lijun, HU Haoquan
{"title":"Direct liquefaction behavior of Shenhua Shangwan coal under CO containing atmosphere","authors":"TANG Bowen,&nbsp;ZHANG Rui,&nbsp;LIU Haiyun,&nbsp;JIN Lijun,&nbsp;HU Haoquan","doi":"10.1016/S1872-5813(24)60451-2","DOIUrl":null,"url":null,"abstract":"<div><div>Direct coal liquefaction (DCL) under CO or syngas atmosphere is beneficial to reduce the cost of hydrogen production. Effects of CO on liquefaction process of Shangwan coal were investigated by comparing the liquefaction behavior in three atmospheres of CO, H<sub>2,</sub> and N<sub>2</sub>. Then, effects of different CO/H<sub>2</sub> ratios and catalysts on the liquefaction process in syngas were investigated. The results indicated that the oil yield under CO atmosphere reached 43.1%, which was 4.2% lower than that under H<sub>2</sub>, but 10.2% higher than that under N<sub>2</sub>. The liquefaction performance was further improved by adding the Shenhua 863 catalyst. It is analyzed that CO promoted liquefaction in two ways: water-gas shift reaction and the reaction between CO and organic structures of coal. Through characterization of the products by GC-MS and FT-IR, it was found that CO makes benzenes, aliphatics, and oxygen-containing compounds in liquefied oil simultaneously increased. The effect on functional groups and free radicals concentration in the solid products was not obvious. The experimental results under syngas showed that the highest oil yield, 57.4%, can be obtained in DCL with 20% CO syngas, and further improved by increasing moisture content of coal appropriately. In addition, the Shenhua 863 catalyst had a good catalytic effect on the liquefaction process and also water-gas shift reaction.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 10","pages":"Pages 1375-1386"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Direct coal liquefaction (DCL) under CO or syngas atmosphere is beneficial to reduce the cost of hydrogen production. Effects of CO on liquefaction process of Shangwan coal were investigated by comparing the liquefaction behavior in three atmospheres of CO, H2, and N2. Then, effects of different CO/H2 ratios and catalysts on the liquefaction process in syngas were investigated. The results indicated that the oil yield under CO atmosphere reached 43.1%, which was 4.2% lower than that under H2, but 10.2% higher than that under N2. The liquefaction performance was further improved by adding the Shenhua 863 catalyst. It is analyzed that CO promoted liquefaction in two ways: water-gas shift reaction and the reaction between CO and organic structures of coal. Through characterization of the products by GC-MS and FT-IR, it was found that CO makes benzenes, aliphatics, and oxygen-containing compounds in liquefied oil simultaneously increased. The effect on functional groups and free radicals concentration in the solid products was not obvious. The experimental results under syngas showed that the highest oil yield, 57.4%, can be obtained in DCL with 20% CO syngas, and further improved by increasing moisture content of coal appropriately. In addition, the Shenhua 863 catalyst had a good catalytic effect on the liquefaction process and also water-gas shift reaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神华上湾煤在含 CO 大气环境下的直接液化行为
在 CO 或合成气气氛下进行煤直接液化(DCL)有利于降低制氢成本。通过比较 CO、H2 和 N2 三种气氛下的液化行为,研究了 CO 对上湾煤液化过程的影响。然后,研究了不同 CO/H2 比率和催化剂对合成气液化过程的影响。结果表明,CO气氛下的产油率达到43.1%,比H2气氛下低4.2%,但比N2气氛下高10.2%。加入神华 863 催化剂后,液化性能进一步提高。据分析,CO 促进液化的方式有两种:水煤气变换反应和 CO 与煤的有机结构反应。通过 GC-MS 和 FT-IR 对产物的表征发现,CO 使液化油中的苯类、脂肪族和含氧化合物同时增加。对固体产物中官能团和自由基浓度的影响并不明显。合成气条件下的实验结果表明,在使用 20% CO 合成气的 DCL 中,可获得最高的出油率(57.4%),并可通过适当提高煤的含水率进一步提高出油率。此外,神华 863 催化剂对液化过程和水煤气变换反应均有良好的催化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
期刊最新文献
Direct liquefaction behavior of Shenhua Shangwan coal under CO containing atmosphere Mechanism of methanol synthesis from CO2 hydrogenation over Rh16/In2O3 catalysts: A combined study on density functional theory and microkinetic modeling Effect of the RhnNin alloy cluster size on the catalytic performance of RhnNin/TiO2 in the conversion of syngas to ethanol Hydrogen production via steam reforming of methanol on Cu/ZnO/Al2O3 catalysts: Effects of Al2O3 precursors Cr-MIL-101 derived nano Cr2O3 for highly efficient dehydrogenation of n-hexane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1