Hongrui Wang, Bowen Liu, Dongqing Pang, Minglie Hu
{"title":"Welding of glass and single crystal graphite film using a high repetition fs laser","authors":"Hongrui Wang, Bowen Liu, Dongqing Pang, Minglie Hu","doi":"10.1016/j.jnoncrysol.2024.123268","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we successfully welded an ordinary glass and a single crystal graphite film without visible cracks by employing a high repetition femtosecond laser. The tensile strength of two welding samples exceeds those of the original films. Based on the SEM-EDS data and the Raman spectra data, two types of plasma welding regions can be clearly discriminated. The welding mechanism can be attributed to the mixture of graphite plasma and glass plasma and their resolidification. The energy density of single pulse at the interface is the most dominant factor because of this welding mechanism. From the Raman spectra data of the rear surface of the <span><math><mrow><mn>20</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> sample, how the shock wave influences the configurations of the C–C bonds in the graphite film can also be studied. Those results are helpful in understanding the dynamics of femtosecond laser welding and quickly optimizing laser parameters.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123268"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324004459","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we successfully welded an ordinary glass and a single crystal graphite film without visible cracks by employing a high repetition femtosecond laser. The tensile strength of two welding samples exceeds those of the original films. Based on the SEM-EDS data and the Raman spectra data, two types of plasma welding regions can be clearly discriminated. The welding mechanism can be attributed to the mixture of graphite plasma and glass plasma and their resolidification. The energy density of single pulse at the interface is the most dominant factor because of this welding mechanism. From the Raman spectra data of the rear surface of the sample, how the shock wave influences the configurations of the C–C bonds in the graphite film can also be studied. Those results are helpful in understanding the dynamics of femtosecond laser welding and quickly optimizing laser parameters.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.