Optimization and performance assessment of Ag@SiO2 core–shell nanofluids for spectral splitting PV/T system: Theoretical and experiment analysis

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-10-25 DOI:10.1016/j.solener.2024.113030
Junhan Xu, Binghong Chen, Kunpeng Yuan, Jun Shu, Qiguo Yang
{"title":"Optimization and performance assessment of Ag@SiO2 core–shell nanofluids for spectral splitting PV/T system: Theoretical and experiment analysis","authors":"Junhan Xu,&nbsp;Binghong Chen,&nbsp;Kunpeng Yuan,&nbsp;Jun Shu,&nbsp;Qiguo Yang","doi":"10.1016/j.solener.2024.113030","DOIUrl":null,"url":null,"abstract":"<div><div>Ag@SiO<sub>2</sub> nanofluid is widely used in spectral splitting PV/T system. Its core–shell structure has great influence on the optical properties. In this work, we focus on the comprehensive analysis and structure optimization of Ag@SiO<sub>2</sub> nanofluid to achieve its optimal spectral performance. DDA method is used to predict the optical properties of Ag@SiO<sub>2</sub> nanofluid and an optimization model based on filter efficiency is proposed. The effect of the SiO<sub>2</sub> shell thickness and Ag core mass concentration is analyzed. It indicates that the spectral performance of Ag@SiO<sub>2</sub> nanofluid can be improved with SiO<sub>2</sub> shell thickness of 15–40 nm and Ag core mass concentration of 81–135 mg/L. To achieve the same theoretical merit function of 1.46, the usage of Ag mass can be reduced by 25/33/44/62 % with SiO<sub>2</sub> coating of 10/20/40/70 nm. The optimal structure to achieve the highest filter efficiency η of 37.8 % is with a shell thickness of 20 nm and a mass concentration of 113.9 mg/L. An indoor PV/T operation testing is conducted to verify the optimization results. The merit function of Ag-based nanofluids increases from 1.58 to 1.598 and a reduction in Ag usage of 17 % is achieved with a SiO<sub>2</sub> coating shell of 17.8 nm. Operation stability is also enhanced with no aggregation observed during the working cycle and 7-day static experiment.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 113030"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007254","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ag@SiO2 nanofluid is widely used in spectral splitting PV/T system. Its core–shell structure has great influence on the optical properties. In this work, we focus on the comprehensive analysis and structure optimization of Ag@SiO2 nanofluid to achieve its optimal spectral performance. DDA method is used to predict the optical properties of Ag@SiO2 nanofluid and an optimization model based on filter efficiency is proposed. The effect of the SiO2 shell thickness and Ag core mass concentration is analyzed. It indicates that the spectral performance of Ag@SiO2 nanofluid can be improved with SiO2 shell thickness of 15–40 nm and Ag core mass concentration of 81–135 mg/L. To achieve the same theoretical merit function of 1.46, the usage of Ag mass can be reduced by 25/33/44/62 % with SiO2 coating of 10/20/40/70 nm. The optimal structure to achieve the highest filter efficiency η of 37.8 % is with a shell thickness of 20 nm and a mass concentration of 113.9 mg/L. An indoor PV/T operation testing is conducted to verify the optimization results. The merit function of Ag-based nanofluids increases from 1.58 to 1.598 and a reduction in Ag usage of 17 % is achieved with a SiO2 coating shell of 17.8 nm. Operation stability is also enhanced with no aggregation observed during the working cycle and 7-day static experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光谱分光光伏/发电系统的 Ag@SiO2 核壳纳米流体的优化和性能评估:理论与实验分析
Ag@SiO2 纳米流体被广泛应用于分光光伏发电系统。其核壳结构对光学性能有很大影响。在这项工作中,我们重点对Ag@SiO2纳米流体进行了综合分析和结构优化,以实现其最佳光谱性能。采用DDA方法预测了Ag@SiO2纳米流体的光学特性,并提出了基于滤波效率的优化模型。分析了 SiO2 外壳厚度和 Ag 核质量浓度的影响。结果表明,当 SiO2 外壳厚度为 15-40 nm,Ag 核质量浓度为 81-135 mg/L 时,Ag@SiO2 纳米流体的光谱性能可以得到改善。为了达到相同的理论功函数 1.46,SiO2 涂层厚度为 10/20/40/70 nm 时,Ag 的用量可减少 25/33/44/62%。壳厚度为 20 nm,质量浓度为 113.9 mg/L,是实现最高过滤效率 η 37.8 % 的最佳结构。为验证优化结果,进行了室内 PV/T 运行测试。银基纳米流体的优点函数从 1.58 增加到 1.598,二氧化硅涂层外壳厚度为 17.8 nm 时,银的用量减少了 17%。运行稳定性也得到了提高,在工作周期和 7 天静态实验中均未观察到聚集现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Corrigendum to “Experimental investigation of a photovoltaic solar air conditioning system and comparison with conventional unit in the context of the state of Piaui, Brazil” [Sol. Energy 272 (2024) 112492] Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: Development of an off-grid prototype Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1