Faisal Nadeem , Huanrong Fan , Iqbal Hussain , Muhammad Kashif Majeed , Muhammad Usman , Faizan Raza , Changbiao Li , Yanpeng Zhang
{"title":"Comparison of non-Hermitian three-dimensional quantization line shape in ion-doped microcrystals","authors":"Faisal Nadeem , Huanrong Fan , Iqbal Hussain , Muhammad Kashif Majeed , Muhammad Usman , Faizan Raza , Changbiao Li , Yanpeng Zhang","doi":"10.1016/j.optmat.2024.116323","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we studied the relationship between non-Hermitian quantization and line shape in ion-doped microcrystals. We depict the Eu<sup>3+</sup>: BiPO<sub>4</sub> exhibited a broad line shape in contrast to Eu<sup>3+</sup>: NaYF<sub>4</sub>, and Dy<sup>3+</sup>: BiPO<sub>4</sub>. The line shape is controlled through angle quantization (constructive and destructive quantization) and phonon detuning effects. The Eu<sup>3+</sup>: BiPO<sub>4</sub> and Eu<sup>3+</sup>: NaYF<sub>4</sub> exhibits less sensitivity to line shape as compared to Dy<sup>3+</sup>: BiPO<sub>4</sub>. The more sensitivity of Dy<sup>3+</sup>: BiPO<sub>4</sub> is supported by the presence of multiple levels, which disrupt the transition from destructive (out of phase de-phase rate Г) to constructive (in phase dressing Rabi frequency G) three-dimensional quantization. The line shape evolution from out of phase to in phase could be tuned by changing time gate position (the ratio of G and Г regulated largely) and time gate width (the ratio of G and Г regulated on a small scale). We observed that the line shape ratio in Dy<sup>3+</sup>: BiPO<sub>4</sub> is significantly smallest (13.63 %) as compared to Eu<sup>3+</sup>: NaYF<sub>4</sub> (61.29 %) and Eu<sup>3+</sup>: BiPO<sub>4</sub> (85.18 %). Furthermore, the angle quantization affects the line shape evolution of fluorescence and Autler-Townes. However, spontaneous four-wave mixing line shape evolution can not be controlled by the angle quantization. Such results hold significant potential for applications in long band stop filter.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116323"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724015064","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we studied the relationship between non-Hermitian quantization and line shape in ion-doped microcrystals. We depict the Eu3+: BiPO4 exhibited a broad line shape in contrast to Eu3+: NaYF4, and Dy3+: BiPO4. The line shape is controlled through angle quantization (constructive and destructive quantization) and phonon detuning effects. The Eu3+: BiPO4 and Eu3+: NaYF4 exhibits less sensitivity to line shape as compared to Dy3+: BiPO4. The more sensitivity of Dy3+: BiPO4 is supported by the presence of multiple levels, which disrupt the transition from destructive (out of phase de-phase rate Г) to constructive (in phase dressing Rabi frequency G) three-dimensional quantization. The line shape evolution from out of phase to in phase could be tuned by changing time gate position (the ratio of G and Г regulated largely) and time gate width (the ratio of G and Г regulated on a small scale). We observed that the line shape ratio in Dy3+: BiPO4 is significantly smallest (13.63 %) as compared to Eu3+: NaYF4 (61.29 %) and Eu3+: BiPO4 (85.18 %). Furthermore, the angle quantization affects the line shape evolution of fluorescence and Autler-Townes. However, spontaneous four-wave mixing line shape evolution can not be controlled by the angle quantization. Such results hold significant potential for applications in long band stop filter.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.