Dancho Yordanov , Rastislav Smolka , Martin Vala , Martin Weiter , Anton Georgiev
{"title":"Versatile photoluminescence behavior of polycyclic hydroxybenzimidazoles driven by intermolecular hydrogen bonding","authors":"Dancho Yordanov , Rastislav Smolka , Martin Vala , Martin Weiter , Anton Georgiev","doi":"10.1016/j.optmat.2024.116274","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, the synthesis of polycyclic hydroxybenzimidazole based on 4-hydroxyphthalimide is presented and two isomeric structures are formed. The isomeric structures are capable of forming intermolecular hydrogen-bonded molecular associates. Hydroxybenzimidazole hydrogen-bonded organic frameworks have been shown to be sensitive to different solvent polarity, particularly in proton donor media, resulting in a blue shift in emission. The role of proton donor media has been evaluated using the binary mixture of acetonitrile/water and protonation by trifluoroacetic acid. The results show that by tuning the environment, the aggregation induced emission has appeared in the blue region and larger aggregates are formed compared to the less polar aprotic solvents. Under acidic conditions, the disruption of the hydrogen-bonded dimers was estimated, resulting in deep blue emission. This provides an opportunity to control the molecular associates and tune the optical behavior.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116274"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014575","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the synthesis of polycyclic hydroxybenzimidazole based on 4-hydroxyphthalimide is presented and two isomeric structures are formed. The isomeric structures are capable of forming intermolecular hydrogen-bonded molecular associates. Hydroxybenzimidazole hydrogen-bonded organic frameworks have been shown to be sensitive to different solvent polarity, particularly in proton donor media, resulting in a blue shift in emission. The role of proton donor media has been evaluated using the binary mixture of acetonitrile/water and protonation by trifluoroacetic acid. The results show that by tuning the environment, the aggregation induced emission has appeared in the blue region and larger aggregates are formed compared to the less polar aprotic solvents. Under acidic conditions, the disruption of the hydrogen-bonded dimers was estimated, resulting in deep blue emission. This provides an opportunity to control the molecular associates and tune the optical behavior.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.