Tunable diameter of electrospun fibers using empirical scaling laws of electrospinning parameters

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-10-10 DOI:10.1016/j.matchemphys.2024.130009
M.A. Munawar , F. Nilsson , D.W. Schubert
{"title":"Tunable diameter of electrospun fibers using empirical scaling laws of electrospinning parameters","authors":"M.A. Munawar ,&nbsp;F. Nilsson ,&nbsp;D.W. Schubert","doi":"10.1016/j.matchemphys.2024.130009","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a new semi-empirical power-law model for predicting electrospun fiber diameter (<em>D</em>), addressing key processing parameters. Polycaprolactone (PCL) fibers were produced using a solvent mixture of Trichloromethane (TCM), Dimethyl Formamide (DMF), and ethanol (EtOH). Systematic experiments validated an existing theoretical model and led to the development of a novel model: <em>D</em> ∼ (c<sup>1/2</sup><em>η</em><sup><em>1/3</em></sup><em>Q</em><sup><em>1/5</em></sup><em>X</em><sup><em>2/3</em></sup><em>)/(U</em><sup><em>2/3</em></sup><em>ω</em><sup><em>1/4</em></sup><em>I</em><sup><em>1/5</em></sup>). This model incorporates seven crucial parameters: viscosity (<em>η</em>), concentration (<em>c</em>), voltage (<em>U</em>), spinning distance (<em>X</em>), flow–rate (<em>Q</em>), current (<em>I</em>) and collector wheel rotation speed (<em>ω</em>). The model was validated through a partial factorial design experiment, proving to be a valuable and reliable tool for predicting fiber diameters and optimizing electrospinning processes. The ability to control fiber diameter is essential for tailoring electrospun fibers for various applications, including biomedicine, filtration, sensors, and lightweight materials.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130009"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011374","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new semi-empirical power-law model for predicting electrospun fiber diameter (D), addressing key processing parameters. Polycaprolactone (PCL) fibers were produced using a solvent mixture of Trichloromethane (TCM), Dimethyl Formamide (DMF), and ethanol (EtOH). Systematic experiments validated an existing theoretical model and led to the development of a novel model: D ∼ (c1/2η1/3Q1/5X2/3)/(U2/3ω1/4I1/5). This model incorporates seven crucial parameters: viscosity (η), concentration (c), voltage (U), spinning distance (X), flow–rate (Q), current (I) and collector wheel rotation speed (ω). The model was validated through a partial factorial design experiment, proving to be a valuable and reliable tool for predicting fiber diameters and optimizing electrospinning processes. The ability to control fiber diameter is essential for tailoring electrospun fibers for various applications, including biomedicine, filtration, sensors, and lightweight materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电纺参数的经验缩放定律调节电纺纤维的直径
本研究针对关键加工参数,引入了一种新的半经验幂律模型来预测电纺纤维直径(D)。使用三氯甲烷 (TCM)、二甲基甲酰胺 (DMF) 和乙醇 (EtOH) 混合溶剂生产聚己内酯 (PCL) 纤维。系统实验验证了现有的理论模型,并由此建立了一个新模型:D ∼ (c1/2η1/3Q1/5X2/3)/(U2/3ω1/4I1/5) 。该模型包含七个关键参数:粘度 (η)、浓度 (c)、电压 (U)、旋转距离 (X)、流速 (Q)、电流 (I) 和收集轮转速 (ω)。该模型通过部分因子设计实验进行了验证,证明是预测纤维直径和优化电纺丝工艺的宝贵而可靠的工具。控制纤维直径的能力对于为生物医学、过滤、传感器和轻质材料等各种应用定制电纺纤维至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction Influence of core fluorination on the phase properties of fan-like azobenzene based supramolecules, their cis-trans photoisomerization and photoluminescence dynamics Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics Synthesis and application of Ho³⁺ doped BaGd₂ZnO₅ nanophosphors for enhanced latent fingerprint development and poroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1