M'bark Elhaid , Hamid Ahchouch , Bouchra Es-Sounni , Omar Id El Mouden , Rachid Salghi , M'hammed Belkhaouda , Mohamed Bakhouch , Siti Fatimah , Mohammed Fahim , Maryam Chafiq , Abdelkarim Chaouiki , Young Gun Ko
{"title":"Surface functionalization of XC18 steel using a new transition metal complex for remarkable corrosion performance: Empirical and theoretical studies","authors":"M'bark Elhaid , Hamid Ahchouch , Bouchra Es-Sounni , Omar Id El Mouden , Rachid Salghi , M'hammed Belkhaouda , Mohamed Bakhouch , Siti Fatimah , Mohammed Fahim , Maryam Chafiq , Abdelkarim Chaouiki , Young Gun Ko","doi":"10.1016/j.matchemphys.2024.130042","DOIUrl":null,"url":null,"abstract":"<div><div>Synthesis of transition metal complexes (TMC) having specific characteristics is advantageous for combining their organic and inorganic properties, to help prevent metals from corrosion. In this study, the corrosion inhibition behavior of [N, N′-bis(salicylidene)-2,2-dimethyl-1,3-propanediaminato] copper (II) (CuL) on the surface of XC18 steel surface immersed in 1.0 M HCl was investigated. The thermodynamic and kinetic corrosion parameters were determined using the mass loss (ML) and electrochemical measurement methods. CuL exhibited a good corrosion inhibition efficiency of 96.72 %. The adsorption behavior of CuL followed the Langmuir isotherm model, indicating both physical and chemical interactions. Morphological structural analysis demonstrated that CuL formed a protective film between the surface of XC18 steel and the corrosives elements, thus confirming its adsorption onto XC18 steel surface. Theoretical calculations were consistent with the experimental findings, thereby confirming that the adsorption of CuL onto the steel surface comprises both physisorption and chemisorption processes. These calculations elucidate the specific bonding nature and emphasize the significant inter- and intra-molecular interactions that enhance the stability and adsorption capability of the CuL inhibitor. The successful formation of a protective layer on the surface of XC18 steel using a TMC signifies exciting prospects for the development of advanced materials with diverse applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130042"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011702","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesis of transition metal complexes (TMC) having specific characteristics is advantageous for combining their organic and inorganic properties, to help prevent metals from corrosion. In this study, the corrosion inhibition behavior of [N, N′-bis(salicylidene)-2,2-dimethyl-1,3-propanediaminato] copper (II) (CuL) on the surface of XC18 steel surface immersed in 1.0 M HCl was investigated. The thermodynamic and kinetic corrosion parameters were determined using the mass loss (ML) and electrochemical measurement methods. CuL exhibited a good corrosion inhibition efficiency of 96.72 %. The adsorption behavior of CuL followed the Langmuir isotherm model, indicating both physical and chemical interactions. Morphological structural analysis demonstrated that CuL formed a protective film between the surface of XC18 steel and the corrosives elements, thus confirming its adsorption onto XC18 steel surface. Theoretical calculations were consistent with the experimental findings, thereby confirming that the adsorption of CuL onto the steel surface comprises both physisorption and chemisorption processes. These calculations elucidate the specific bonding nature and emphasize the significant inter- and intra-molecular interactions that enhance the stability and adsorption capability of the CuL inhibitor. The successful formation of a protective layer on the surface of XC18 steel using a TMC signifies exciting prospects for the development of advanced materials with diverse applications.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.