Ionic liquid/polybenzimidazole/SiO2 composite membranes for medium temperature operating

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-10-23 DOI:10.1016/j.ssi.2024.116720
Yuliya A. Fadeeva, Liudmila E. Shmukler, Liubov P. Safonova
{"title":"Ionic liquid/polybenzimidazole/SiO2 composite membranes for medium temperature operating","authors":"Yuliya A. Fadeeva,&nbsp;Liudmila E. Shmukler,&nbsp;Liubov P. Safonova","doi":"10.1016/j.ssi.2024.116720","DOIUrl":null,"url":null,"abstract":"<div><div>Fuel cells (FC) with proton exchange membranes (PEMs) are seen as an alternative energy source due to their efficiency, power density, low emissions, and reliable energy supply. Proton exchange membranes based on polybenzimidazole have shown potential for operating at high and medium temperatures to enhance FCs performance. New composite membranes made from <em>m</em>-PBI and diethylammonium mesylate [DEAH/MsO] ionic liquid were prepared trough a solution casting method. Silica nanopowder (SiO<sub>2</sub>) was used as an inorganic filler at varying concentrations (0.5–20 wt%). The ionic liquid content in the membranes ranged from 1 to 2.5 mol per mole of PBI monomer units. Our study is focused on the thermal properties, such as thermal stability and phase transition temperatures, morphology, conductivity, and electrochemical stability of the membranes. The influence of the inorganic filler on these properties was also discussed.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"417 ","pages":"Article 116720"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002686","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fuel cells (FC) with proton exchange membranes (PEMs) are seen as an alternative energy source due to their efficiency, power density, low emissions, and reliable energy supply. Proton exchange membranes based on polybenzimidazole have shown potential for operating at high and medium temperatures to enhance FCs performance. New composite membranes made from m-PBI and diethylammonium mesylate [DEAH/MsO] ionic liquid were prepared trough a solution casting method. Silica nanopowder (SiO2) was used as an inorganic filler at varying concentrations (0.5–20 wt%). The ionic liquid content in the membranes ranged from 1 to 2.5 mol per mole of PBI monomer units. Our study is focused on the thermal properties, such as thermal stability and phase transition temperatures, morphology, conductivity, and electrochemical stability of the membranes. The influence of the inorganic filler on these properties was also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于中温操作的离子液体/聚苯并咪唑/二氧化硅复合膜
带有质子交换膜(PEM)的燃料电池(FC)因其高效率、功率密度、低排放和可靠的能源供应而被视为一种替代能源。基于聚苯并咪唑的质子交换膜已显示出在高温和中温条件下工作以提高燃料电池性能的潜力。本研究采用溶液浇铸法制备了由 m-PBI 和甲磺酸二乙胺 [DEAH/MsO] 离子液体制成的新型复合膜。纳米二氧化硅(SiO2)被用作不同浓度(0.5-20 wt%)的无机填料。膜中离子液体的含量范围为每摩尔 PBI 单体单元 1 至 2.5 摩尔。我们的研究重点是膜的热性能,如热稳定性和相变温度、形态、导电性和电化学稳定性。我们还讨论了无机填料对这些特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Editorial Board Enhancing ionic conductivity of LiSiPON thin films electrolytes: Overcoming synthesis challenges related to Li-migration in the precursor target Preface "Special Issue for the 21st International Conference on Solid State Protonic Conductors (SSPC-21)" Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers Performance improvement tactics of sensitized solar cells based on CuInS2 quantum dots prepared by high temperature hot injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1