Panpan Peng , Ying Lu , Xuelian Ren , Cong Yan , Xinlong Guo , Ruilong Liu , Xiaohan Song , He Huang
{"title":"SIRT3 differentially regulates lysine benzoylation from SIRT2 in mammalian cells","authors":"Panpan Peng , Ying Lu , Xuelian Ren , Cong Yan , Xinlong Guo , Ruilong Liu , Xiaohan Song , He Huang","doi":"10.1016/j.isci.2024.111176","DOIUrl":null,"url":null,"abstract":"<div><div>Lysine benzoylation (Kbz), a new type of protein post-translational modification (PTM) we discovered, has garnered significant attention. While we initially identified SIRT2 as a debenzoylase in mammalian cells, recent findings suggest its exclusivity may be questioned. However, other debenzoylases in mammalian cells remain underexplored. Here, our study reveals SIRT3 as an additional debenzoylase. Through quantitative analysis, we identified 1,075 Kbz sites in mammalian cells, with 44 specifically mediated by SIRT3 and 66 influenced by SIRT2. Notably, SIRT3 and SIRT2 regulate distinct Kbz substrates, indicating involvement in different cellular processes. Functional investigations demonstrated SIRT3’s regulation of benzoylated protein peptidyl-prolyl <em>cis</em>-trans isomerase F (PPIF), where K73bz and K197bz markedly diminished interactions with the tumor suppressor p53. Additionally, K978bz on ATP-citrate lyase (ACLY) notably inhibited its enzymatic activity. This study not only identifies a debenzoylase and its Kbz substrates but also enhances our understanding of Kbz’s biological functions.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 11","pages":"Article 111176"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224024015","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lysine benzoylation (Kbz), a new type of protein post-translational modification (PTM) we discovered, has garnered significant attention. While we initially identified SIRT2 as a debenzoylase in mammalian cells, recent findings suggest its exclusivity may be questioned. However, other debenzoylases in mammalian cells remain underexplored. Here, our study reveals SIRT3 as an additional debenzoylase. Through quantitative analysis, we identified 1,075 Kbz sites in mammalian cells, with 44 specifically mediated by SIRT3 and 66 influenced by SIRT2. Notably, SIRT3 and SIRT2 regulate distinct Kbz substrates, indicating involvement in different cellular processes. Functional investigations demonstrated SIRT3’s regulation of benzoylated protein peptidyl-prolyl cis-trans isomerase F (PPIF), where K73bz and K197bz markedly diminished interactions with the tumor suppressor p53. Additionally, K978bz on ATP-citrate lyase (ACLY) notably inhibited its enzymatic activity. This study not only identifies a debenzoylase and its Kbz substrates but also enhances our understanding of Kbz’s biological functions.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.