{"title":"Real-time monitoring of lower limb movement resistance based on deep learning","authors":"Burenbatu , Yuanmeng Liu , Tianyi Lyu","doi":"10.1016/j.aej.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time lower limb movement resistance monitoring is critical for various applications in clinical and sports settings, such as rehabilitation and athletic training. Current methods often face limitations in accuracy, computational efficiency, and generalizability, which hinder their practical implementation. To address these challenges, we propose a novel Mobile Multi-Task Learning Network (MMTL-Net) that integrates MobileNetV3 for efficient feature extraction and employs multi-task learning to simultaneously predict resistance levels and recognize activities. The advantages of MMTL-Net include enhanced accuracy, reduced latency, and improved computational efficiency, making it highly suitable for real-time applications. Experimental results demonstrate that MMTL-Net significantly outperforms existing models on the UCI Human Activity Recognition and Wireless Sensor Data Mining Activity Prediction datasets, achieving a lower Force Error Rate (FER) of 6.8% and a higher Resistance Prediction Accuracy (RPA) of 91.2%. Additionally, the model shows a Real-time Responsiveness (RTR) of 12 ms and a Throughput (TP) of 33 frames per second. These findings underscore the model’s robustness and effectiveness in diverse real-world scenarios. The proposed framework not only advances the state-of-the-art in resistance monitoring but also paves the way for more efficient and accurate systems in clinical and sports applications. In real-world settings, the practical implications of MMTL-Net include its potential to enhance patient outcomes in rehabilitation and improve athletic performance through precise, real-time monitoring and feedback.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 136-147"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824010457","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time lower limb movement resistance monitoring is critical for various applications in clinical and sports settings, such as rehabilitation and athletic training. Current methods often face limitations in accuracy, computational efficiency, and generalizability, which hinder their practical implementation. To address these challenges, we propose a novel Mobile Multi-Task Learning Network (MMTL-Net) that integrates MobileNetV3 for efficient feature extraction and employs multi-task learning to simultaneously predict resistance levels and recognize activities. The advantages of MMTL-Net include enhanced accuracy, reduced latency, and improved computational efficiency, making it highly suitable for real-time applications. Experimental results demonstrate that MMTL-Net significantly outperforms existing models on the UCI Human Activity Recognition and Wireless Sensor Data Mining Activity Prediction datasets, achieving a lower Force Error Rate (FER) of 6.8% and a higher Resistance Prediction Accuracy (RPA) of 91.2%. Additionally, the model shows a Real-time Responsiveness (RTR) of 12 ms and a Throughput (TP) of 33 frames per second. These findings underscore the model’s robustness and effectiveness in diverse real-world scenarios. The proposed framework not only advances the state-of-the-art in resistance monitoring but also paves the way for more efficient and accurate systems in clinical and sports applications. In real-world settings, the practical implications of MMTL-Net include its potential to enhance patient outcomes in rehabilitation and improve athletic performance through precise, real-time monitoring and feedback.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering