Ali Ahmed Ali Salem , Kwan Yiew Lau , Ahmed Abu-Saida
{"title":"Detection of overhead line glass insulator condition using dual function device and deep learning approach","authors":"Ali Ahmed Ali Salem , Kwan Yiew Lau , Ahmed Abu-Saida","doi":"10.1016/j.compeleceng.2024.109764","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a design of a multifunction smart wireless device for online condition monitoring of transmission line insulators. The proposed device can measure the insulator leakage current and take images of the high-voltage insulation. Yolov5-based models and deep convolutional neural networks (DCCN) are developed to analyze and classify the measured data and estimate the insulator's health condition. We have developed and tested a prototype of the proposed device. The device can issue a real-time warning message when a sudden change takes place in the leakage current value. The control center or smartphones receive the collected data wirelessly. We analyze the transmitted data using the developed methods to detect any anomalies and take appropriate remedial action. The performance and feasibility of the developed device are assessed through extensive experimental analysis. Results attest to the robustness of the proposed device, which is easy to install for existing and future overhead transmission line insulators.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109764"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006918","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a design of a multifunction smart wireless device for online condition monitoring of transmission line insulators. The proposed device can measure the insulator leakage current and take images of the high-voltage insulation. Yolov5-based models and deep convolutional neural networks (DCCN) are developed to analyze and classify the measured data and estimate the insulator's health condition. We have developed and tested a prototype of the proposed device. The device can issue a real-time warning message when a sudden change takes place in the leakage current value. The control center or smartphones receive the collected data wirelessly. We analyze the transmitted data using the developed methods to detect any anomalies and take appropriate remedial action. The performance and feasibility of the developed device are assessed through extensive experimental analysis. Results attest to the robustness of the proposed device, which is easy to install for existing and future overhead transmission line insulators.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.