Ru-shuai Liu, Fan Tang, Xiao-dong Shi, Guang-ping Hao, An-hui Lu
{"title":"Preparation of highly graphitized porous carbon and its ethane/ethylene separation performance","authors":"Ru-shuai Liu, Fan Tang, Xiao-dong Shi, Guang-ping Hao, An-hui Lu","doi":"10.1016/S1872-5805(24)60859-0","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient separation of ethane (C<sub>2</sub>H<sub>6</sub>) and ethylene (C<sub>2</sub>H<sub>4</sub>) is crucial for the preparation of polymer-grade C<sub>2</sub>H<sub>4</sub>, necessitating the development of highly selective and stable C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> adsorbents. Highly graphitized porous carbon, denoted GC-800, was synthesized by polymerization at room temperature followed by carbonization at 800 °C using phenolic resin as the precursor and FeCl<sub>3</sub> as the iron source. Vienna Ab-initio Simulation Package (VASP) calculations confirmed a higher binding energy between C<sub>2</sub>H<sub>6</sub> molecules and graphitized porous carbon surfaces, so that a high degree of graphitization increased the adsorption capacity of porous carbon for C<sub>2</sub>H<sub>6</sub>. However, catalytic graphitization using Fe at high temperatures disrupted the microporous structure of the carbon, thereby reducing its ability to separate C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub>. By controlling the carbonization temperature, the degree of graphitization and pore structure of the porous carbon could be changed. Raman spectra and XPS spectra showed that the GC-800 had a high degree of graphitization, with a sp<sup>2</sup> C content as high as 73%. Low-temperature N<sub>2</sub> physical adsorption measurements estimated the specific surface area of GC-800 to be as high as 574 m<sup>2</sup>·g<sup>−1</sup>. At 298 K and 1 bar, it had an equilibrium adsorption capacity of 2.16 mmol·g<sup>−1</sup> for C<sub>2</sub>H<sub>6</sub>, with the C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> (1:1 and 1:9, <em>v</em>/<em>v</em>) ideal adsorbed solution theory selectivity respectively reaching 2.4 and 3.8, significantly higher than the values of most reported high-performance C<sub>2</sub>H<sub>6</sub> selective adsorbents. Dynamic breakthrough experiments showed that GC-800 could produce high-purity C<sub>2</sub>H<sub>4</sub> in a single step from a mixture of C<sub>2</sub>H<sub>6</sub> and C<sub>2</sub>H<sub>4</sub>. Dynamic cycling tests confirmed its good cyclic stability, and that it could efficiently separate C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> even under humid conditions.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 1027-1036"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608590","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient separation of ethane (C2H6) and ethylene (C2H4) is crucial for the preparation of polymer-grade C2H4, necessitating the development of highly selective and stable C2H6/C2H4 adsorbents. Highly graphitized porous carbon, denoted GC-800, was synthesized by polymerization at room temperature followed by carbonization at 800 °C using phenolic resin as the precursor and FeCl3 as the iron source. Vienna Ab-initio Simulation Package (VASP) calculations confirmed a higher binding energy between C2H6 molecules and graphitized porous carbon surfaces, so that a high degree of graphitization increased the adsorption capacity of porous carbon for C2H6. However, catalytic graphitization using Fe at high temperatures disrupted the microporous structure of the carbon, thereby reducing its ability to separate C2H6/C2H4. By controlling the carbonization temperature, the degree of graphitization and pore structure of the porous carbon could be changed. Raman spectra and XPS spectra showed that the GC-800 had a high degree of graphitization, with a sp2 C content as high as 73%. Low-temperature N2 physical adsorption measurements estimated the specific surface area of GC-800 to be as high as 574 m2·g−1. At 298 K and 1 bar, it had an equilibrium adsorption capacity of 2.16 mmol·g−1 for C2H6, with the C2H6/C2H4 (1:1 and 1:9, v/v) ideal adsorbed solution theory selectivity respectively reaching 2.4 and 3.8, significantly higher than the values of most reported high-performance C2H6 selective adsorbents. Dynamic breakthrough experiments showed that GC-800 could produce high-purity C2H4 in a single step from a mixture of C2H6 and C2H4. Dynamic cycling tests confirmed its good cyclic stability, and that it could efficiently separate C2H6/C2H4 even under humid conditions.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.