EDRP-GTDQN: An adaptive routing protocol for energy and delay optimization in wireless sensor networks using game theory and deep reinforcement learning

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-10-19 DOI:10.1016/j.adhoc.2024.103687
Ning Liu, Jun Wang, Fazhan Tao, Zhumu Fu, Bo Liu
{"title":"EDRP-GTDQN: An adaptive routing protocol for energy and delay optimization in wireless sensor networks using game theory and deep reinforcement learning","authors":"Ning Liu,&nbsp;Jun Wang,&nbsp;Fazhan Tao,&nbsp;Zhumu Fu,&nbsp;Bo Liu","doi":"10.1016/j.adhoc.2024.103687","DOIUrl":null,"url":null,"abstract":"<div><div>Routing protocols, as a crucial component of the internet of things (IoT), play a significant role in data collection and environmental monitoring tasks. However, existing clustering routing protocols suffer from issues such as uneven network energy consumption, high communication delays, and inadequate adaptation to topology changes. To address these issues, this study proposes an adaptive routing algorithm to balance energy consumption and delay using game theory and deep Q-network (DQN) algorithms (EDRP-GTDQN). Specifically, EDRP-GTDQN evaluates the importance of node positions using node centrality and integrates a game-theoretic-based approach to select optimal cluster heads in terms of node centrality and residual energy. Moreover, graph convolutional networks (GCN) and DQN are incorporated to construct transmission paths for cluster heads, adapt to network topology changes, and balance energy consumption and performance. Furthermore, a cluster rotation mechanism is employed to optimize overall network energy consumption and prevent the formation of hotspots. Experimental results demonstrate that EDRP-GTDQN achieves average performance improvements of 19.76%, 30.04%, 44.2%, and 61.42% in average energy consumption, network lifetime, and average end-to-end delay compared to conventional routing protocols such as EECRAIFA, MRP-GTCO, DEEC, and MH-LEACH. Therefore, EDRP-GTDQN is undoubtedly an effective solution to reduce energy consumption and enhance service quality in wireless sensor networks.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002981","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Routing protocols, as a crucial component of the internet of things (IoT), play a significant role in data collection and environmental monitoring tasks. However, existing clustering routing protocols suffer from issues such as uneven network energy consumption, high communication delays, and inadequate adaptation to topology changes. To address these issues, this study proposes an adaptive routing algorithm to balance energy consumption and delay using game theory and deep Q-network (DQN) algorithms (EDRP-GTDQN). Specifically, EDRP-GTDQN evaluates the importance of node positions using node centrality and integrates a game-theoretic-based approach to select optimal cluster heads in terms of node centrality and residual energy. Moreover, graph convolutional networks (GCN) and DQN are incorporated to construct transmission paths for cluster heads, adapt to network topology changes, and balance energy consumption and performance. Furthermore, a cluster rotation mechanism is employed to optimize overall network energy consumption and prevent the formation of hotspots. Experimental results demonstrate that EDRP-GTDQN achieves average performance improvements of 19.76%, 30.04%, 44.2%, and 61.42% in average energy consumption, network lifetime, and average end-to-end delay compared to conventional routing protocols such as EECRAIFA, MRP-GTCO, DEEC, and MH-LEACH. Therefore, EDRP-GTDQN is undoubtedly an effective solution to reduce energy consumption and enhance service quality in wireless sensor networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EDRP-GTDQN:利用博弈论和深度强化学习优化无线传感器网络能量和延迟的自适应路由协议
路由协议作为物联网(IoT)的重要组成部分,在数据收集和环境监测任务中发挥着重要作用。然而,现有的聚类路由协议存在网络能耗不均衡、通信延迟高、对拓扑变化适应性不足等问题。为解决这些问题,本研究提出了一种自适应路由算法,利用博弈论和深度 Q 网络(DQN)算法(EDRP-GTDQN)来平衡能耗和延迟。具体来说,EDRP-GTDQN 利用节点中心度评估节点位置的重要性,并整合基于博弈论的方法,从节点中心度和剩余能量的角度选择最佳簇头。此外,还采用图卷积网络(GCN)和 DQN 为簇头构建传输路径,适应网络拓扑变化,平衡能耗和性能。此外,还采用了簇轮换机制,以优化整体网络能耗,防止形成热点。实验结果表明,与 EECRAIFA、MRP-GTCO、DEEC 和 MH-LEACH 等传统路由协议相比,EDRP-GTDQN 在平均能耗、网络寿命和平均端到端延迟方面的平均性能分别提高了 19.76%、30.04%、44.2% 和 61.42%。因此,EDRP-GTDQN 无疑是无线传感器网络中降低能耗、提高服务质量的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
Transitive reasoning: A high-performance computing model for significant pattern discovery in cognitive IoT sensor network Deep learning with synthetic data for wireless NLOS positioning with a single base station ADRP-DQL: An adaptive distributed routing protocol for underwater acoustic sensor networks using deep Q-learning A context-aware zero trust-based hybrid approach to IoT-based self-driving vehicles security BLE-based sensors for privacy-enabled contagious disease monitoring with zero trust architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1