A review of external quality inspection for fruit grading using CNN models

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2024-10-16 DOI:10.1016/j.aiia.2024.10.002
Luis E. Chuquimarca , Boris X. Vintimilla , Sergio A. Velastin
{"title":"A review of external quality inspection for fruit grading using CNN models","authors":"Luis E. Chuquimarca ,&nbsp;Boris X. Vintimilla ,&nbsp;Sergio A. Velastin","doi":"10.1016/j.aiia.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"14 ","pages":"Pages 1-20"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CNN 模型对水果分级的外部质量检测进行审查
本文综述了近期用于水果外部质量检测的 CNN 模型的最新技术水平,考虑了水果的颜色、形状、大小和缺陷等参数,用于根据农产品的国际营销水平对水果进行分类。文献综述考虑了不同数据集中的水果图像数量、CNN 模型使用的图像类型、每个 CNN 获得的性能结果、有助于提高准确性的优化器,以及用于迁移学习的预训练 CNN 模型的使用情况。CNN 模型使用了可见光、红外、高光谱和多光谱波段的各类图像。此外,所使用的水果图像数据集要么是真实的,要么是合成的。最后,几个表格总结了所查阅的文章,并根据检测参数进行了优先排序,以便于对每项工作进行批判性比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
A review of external quality inspection for fruit grading using CNN models Automatic location and recognition of horse freezing brand using rotational YOLOv5 deep learning network Prediction of spatial heterogeneity in nutrient-limited sub-tropical maize yield: Implications for precision management in the eastern Indo-Gangetic Plains UAV-based field watermelon detection and counting using YOLOv8s with image panorama stitching and overlap partitioning Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1