High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2025-01-10 DOI:10.1016/j.aiia.2025.01.003
Tao Cheng , Dongyan Zhang , Gan Zhang , Tianyi Wang , Weibo Ren , Feng Yuan , Yaling Liu , Zhaoming Wang , Chunjiang Zhao
{"title":"High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges","authors":"Tao Cheng ,&nbsp;Dongyan Zhang ,&nbsp;Gan Zhang ,&nbsp;Tianyi Wang ,&nbsp;Weibo Ren ,&nbsp;Feng Yuan ,&nbsp;Yaling Liu ,&nbsp;Zhaoming Wang ,&nbsp;Chunjiang Zhao","doi":"10.1016/j.aiia.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>High-throughput phenotyping (HTP) technology is now a significant bottleneck in the efficient selection and breeding of superior forage genetic resources. To better understand the status of forage phenotyping research and identify key directions for development, this review summarizes advances in HTP technology for forage phenotypic analysis over the past ten years. This paper reviews the unique aspects and research priorities in forage phenotypic monitoring, highlights key remote sensing platforms, examines the applications of advanced sensing technology for quantifying phenotypic traits, explores artificial intelligence (AI) algorithms in phenotypic data integration and analysis, and assesses recent progress in phenotypic genomics. The practical applications of HTP technology in forage remain constrained by several challenges. These include establishing uniform data collection standards, designing effective algorithms to handle complex genetic and environmental interactions, deepening the cross-exploration of phenomics-genomics, solving the problem of pathological inversion of forage phenotypic growth monitoring models, and developing low-cost forage phenotypic equipment. Resolving these challenges will unlock the full potential of HTP, enabling precise identification of superior forage traits, accelerating the breeding of superior varieties, and ultimately improving forage yield.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 1","pages":"Pages 98-115"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput phenotyping (HTP) technology is now a significant bottleneck in the efficient selection and breeding of superior forage genetic resources. To better understand the status of forage phenotyping research and identify key directions for development, this review summarizes advances in HTP technology for forage phenotypic analysis over the past ten years. This paper reviews the unique aspects and research priorities in forage phenotypic monitoring, highlights key remote sensing platforms, examines the applications of advanced sensing technology for quantifying phenotypic traits, explores artificial intelligence (AI) algorithms in phenotypic data integration and analysis, and assesses recent progress in phenotypic genomics. The practical applications of HTP technology in forage remain constrained by several challenges. These include establishing uniform data collection standards, designing effective algorithms to handle complex genetic and environmental interactions, deepening the cross-exploration of phenomics-genomics, solving the problem of pathological inversion of forage phenotypic growth monitoring models, and developing low-cost forage phenotypic equipment. Resolving these challenges will unlock the full potential of HTP, enabling precise identification of superior forage traits, accelerating the breeding of superior varieties, and ultimately improving forage yield.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges Crop-conditional semantic segmentation for efficient agricultural disease assessment Knowledge-guided temperature correction method for soluble solids content detection of watermelon based on Vis/NIR spectroscopy Enhancing citrus surface defects detection: A priori feature guided semantic segmentation model PAB-Mamba-YOLO: VSSM assists in YOLO for aggressive behavior detection among weaned piglets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1