Youcef Fitas , Ahmed Chemori , Johann Lamaury , Thierry Roux
{"title":"A novel feedforward extended model reference adaptive control of PKMs: Design and real-time experiments","authors":"Youcef Fitas , Ahmed Chemori , Johann Lamaury , Thierry Roux","doi":"10.1016/j.mechatronics.2024.103261","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach for controlling Parallel Kinematic Manipulators (PKMs) using a feedforward augmented Model Reference Adaptive Control (MRAC) scheme. The original direct MRAC approach lacks the knowledge of the dynamic model and does not ensure boundedness of the feedback gains. To overcome these limitations, our proposed approach incorporates a feedforward dynamic term to enhance the tracking performance, and a projection operator to guarantee the boundedness of the feedback gains. The proposed controller is validated through real-time experiments using a 6-Degrees-Of-Freedom (DOF) PKM, and is compared with the original direct MRAC and some state-of-the-art controllers in various scenarios, including nominal and robustness cases. The obtained experimental results demonstrate the superiority of the proposed approach in terms of trajectory tracking performances and adaptation efficiency.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103261"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001260","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel approach for controlling Parallel Kinematic Manipulators (PKMs) using a feedforward augmented Model Reference Adaptive Control (MRAC) scheme. The original direct MRAC approach lacks the knowledge of the dynamic model and does not ensure boundedness of the feedback gains. To overcome these limitations, our proposed approach incorporates a feedforward dynamic term to enhance the tracking performance, and a projection operator to guarantee the boundedness of the feedback gains. The proposed controller is validated through real-time experiments using a 6-Degrees-Of-Freedom (DOF) PKM, and is compared with the original direct MRAC and some state-of-the-art controllers in various scenarios, including nominal and robustness cases. The obtained experimental results demonstrate the superiority of the proposed approach in terms of trajectory tracking performances and adaptation efficiency.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.