{"title":"Wavelet-packet-transform-based identification of motor systems","authors":"Zhengfeng Huang , Beili Gong","doi":"10.1016/j.mechatronics.2024.103264","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate system modeling is the key to high-performance motor control. However, there usually exist nonlinear position-dependent cogging torque disturbances in motor systems, which makes classical linear system identification algorithms unavailable to such systems. Therefore, in this paper, a wavelet-packet-transform (WPT)-based preprocessing method is proposed to extract and attenuate the cogging torque disturbances of the identification data, so as to obtain an accurate linear model of the motor system by applying a classical identification algorithm without compensating the cogging torque in advance. Both the simulation and experiments show that the proposed method is a simple and efficient way to obtain a linear model for a motor with cogging torque disturbances.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103264"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001296","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate system modeling is the key to high-performance motor control. However, there usually exist nonlinear position-dependent cogging torque disturbances in motor systems, which makes classical linear system identification algorithms unavailable to such systems. Therefore, in this paper, a wavelet-packet-transform (WPT)-based preprocessing method is proposed to extract and attenuate the cogging torque disturbances of the identification data, so as to obtain an accurate linear model of the motor system by applying a classical identification algorithm without compensating the cogging torque in advance. Both the simulation and experiments show that the proposed method is a simple and efficient way to obtain a linear model for a motor with cogging torque disturbances.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.