{"title":"Fundamentals of copper(II) adsorption on phyllosilicate minerals relevant to crud formation in solvent extraction from heap leach liquors","authors":"","doi":"10.1016/j.hydromet.2024.106409","DOIUrl":null,"url":null,"abstract":"<div><div>Because of the common presence of different silicate minerals, like kaolinite, montmorillonite and muscovite as gangue minerals in the beneficiation of copper oxide ores, the interaction between copper(II) ions in solution and each of these minerals is a field of strong interest, considering their implications on the aggregation of these minerals in the extreme pH conditions typical of hydrometallurgical unit operations for copper production. After copper adsorption isotherms determination at pH 2 and 4, specific adsorption data were fitted to both Langmuir and Freundlich models. It was found that adsorption is systematically larger at pH 4, and that montmorillonite is the mineral that displays a larger adsorption capacity, as in principle expected by its larger cation exchange capacity, CEC. A good fitting to the Langmuir model was obtained for the three samples, and montmorillonite also appears to conform to Freundlich isotherm predictions, as the tested concentrations of copper(II) do not allow to reach saturation. Furthermore, some desorption is measured for kaolinite and muscovite at the highest copper concentrations, probably because of significant interactions between the adsorbed ions. No such desorption was detected in montmorillonite samples. An XPS analysis of the surfaces of the three minerals suggests that copper adsorption in kaolinite is not associated to a cation exchange process but rather to electrostatic interactions between silica-like faces of the clay. In contrast, ionic exchange of structural calcium (for montmorillonite) or potassium (in the case of muscovite) seems to be the predominant mechanism of Cu(II) adsorption in the other two samples. Electrophoretic mobility determinations agree with this hypothesis: the mobility (always negative, with no traces of charge inversion) decreases in absolute value when kaolinite particles are in contact with solutions of increasing copper concentration at pH 2 or pH 4. On the other hand, the electrophoretic mobility values of muscovite and montmorillonite showed a weak pH and copper concentration dependence, a result that matches well with the ion exchange processes detected in the XPS measurements.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X2400149X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Because of the common presence of different silicate minerals, like kaolinite, montmorillonite and muscovite as gangue minerals in the beneficiation of copper oxide ores, the interaction between copper(II) ions in solution and each of these minerals is a field of strong interest, considering their implications on the aggregation of these minerals in the extreme pH conditions typical of hydrometallurgical unit operations for copper production. After copper adsorption isotherms determination at pH 2 and 4, specific adsorption data were fitted to both Langmuir and Freundlich models. It was found that adsorption is systematically larger at pH 4, and that montmorillonite is the mineral that displays a larger adsorption capacity, as in principle expected by its larger cation exchange capacity, CEC. A good fitting to the Langmuir model was obtained for the three samples, and montmorillonite also appears to conform to Freundlich isotherm predictions, as the tested concentrations of copper(II) do not allow to reach saturation. Furthermore, some desorption is measured for kaolinite and muscovite at the highest copper concentrations, probably because of significant interactions between the adsorbed ions. No such desorption was detected in montmorillonite samples. An XPS analysis of the surfaces of the three minerals suggests that copper adsorption in kaolinite is not associated to a cation exchange process but rather to electrostatic interactions between silica-like faces of the clay. In contrast, ionic exchange of structural calcium (for montmorillonite) or potassium (in the case of muscovite) seems to be the predominant mechanism of Cu(II) adsorption in the other two samples. Electrophoretic mobility determinations agree with this hypothesis: the mobility (always negative, with no traces of charge inversion) decreases in absolute value when kaolinite particles are in contact with solutions of increasing copper concentration at pH 2 or pH 4. On the other hand, the electrophoretic mobility values of muscovite and montmorillonite showed a weak pH and copper concentration dependence, a result that matches well with the ion exchange processes detected in the XPS measurements.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.