Unveiling the potential of decorating tunable morphology of bismuth sulfide nanostructures on the Bi2WO6 nanosheets for enhanced photoelectrochemical performance

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Science: Advanced Materials and Devices Pub Date : 2024-10-10 DOI:10.1016/j.jsamd.2024.100800
Yuan-Chang Liang, Chun-Hsi Yang
{"title":"Unveiling the potential of decorating tunable morphology of bismuth sulfide nanostructures on the Bi2WO6 nanosheets for enhanced photoelectrochemical performance","authors":"Yuan-Chang Liang,&nbsp;Chun-Hsi Yang","doi":"10.1016/j.jsamd.2024.100800","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we used different sulfur sources (thiourea and sodium sulfide) in the hydrothermal vulcanization to create two types of Bi<sub>2</sub>S<sub>3</sub>/Bi<sub>2</sub>WO<sub>6</sub> composite materials with different structures. We varied the vulcanization duration to control the degree of vulcanization of the samples. The composites made with sodium sulfide displayed a mix of particles and nanosheets, while those made with thiourea showed nanowires and nanosheets. The choice of sulfur source had a significant impact on the structural characteristics of the composite material. In photoelectrochemical experiments (PEC), the vulcanization-treated Bi<sub>2</sub>S<sub>3</sub>/Bi<sub>2</sub>WO<sub>6</sub> composites improved significantly compared to the pristine Bi<sub>2</sub>WO<sub>6</sub> template. In particular, the Bi<sub>2</sub>S<sub>3</sub>/Bi<sub>2</sub>WO<sub>6</sub> composite prepared using sodium sulfide precursor for 4 h exhibited the best photocurrent density and the lowest charge transfer interface resistance. The improved performance is attributed to the suitable defect density and a Z-scheme mechanism facilitated by the built-in electric field at the interface, which effectively separated photogenerated carriers, increasing active species and significantly improving the composites' efficiency in PEC reactions.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246821792400131X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we used different sulfur sources (thiourea and sodium sulfide) in the hydrothermal vulcanization to create two types of Bi2S3/Bi2WO6 composite materials with different structures. We varied the vulcanization duration to control the degree of vulcanization of the samples. The composites made with sodium sulfide displayed a mix of particles and nanosheets, while those made with thiourea showed nanowires and nanosheets. The choice of sulfur source had a significant impact on the structural characteristics of the composite material. In photoelectrochemical experiments (PEC), the vulcanization-treated Bi2S3/Bi2WO6 composites improved significantly compared to the pristine Bi2WO6 template. In particular, the Bi2S3/Bi2WO6 composite prepared using sodium sulfide precursor for 4 h exhibited the best photocurrent density and the lowest charge transfer interface resistance. The improved performance is attributed to the suitable defect density and a Z-scheme mechanism facilitated by the built-in electric field at the interface, which effectively separated photogenerated carriers, increasing active species and significantly improving the composites' efficiency in PEC reactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示在 Bi2WO6 纳米片上装饰可调硫化铋纳米结构形态的潜力,以提高光电化学性能
在本研究中,我们在水热硫化过程中使用了不同的硫源(硫脲和硫化钠),从而制备出两种具有不同结构的 Bi2S3/Bi2WO6 复合材料。我们改变硫化持续时间来控制样品的硫化程度。用硫化钠制成的复合材料显示出颗粒和纳米片的混合结构,而用硫脲制成的复合材料则显示出纳米线和纳米片的混合结构。硫源的选择对复合材料的结构特性有重大影响。在光电化学实验(PEC)中,硫化处理过的 Bi2S3/Bi2WO6 复合材料与原始 Bi2WO6 模板相比有显著改善。特别是,使用硫化钠前驱体硫化 4 小时制备的 Bi2S3/Bi2WO6 复合材料表现出最佳的光电流密度和最低的电荷转移界面电阻。性能的提高归功于合适的缺陷密度和界面内置电场促进的 Z 型机制,它们有效地分离了光生载流子,增加了活性物种,显著提高了复合材料在 PEC 反应中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
期刊最新文献
Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators A novel carbon quantum dot (CQD) synthesis method with cost-effective reactants and a definitive indication: Hot bubble synthesis (HBBBS) Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning Photothermal impacts induced by laser pulse in a 2D semiconducting medium with temperature-dependent properties under strain–temperature rate-dependent theory Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1