Jhalak Gupta , Arham S. Ahmed , Pushpendra , Ameer Azam
{"title":"Comparative study of NiO based core-shell nanocomposites to high performance supercapacitor electrode materials","authors":"Jhalak Gupta , Arham S. Ahmed , Pushpendra , Ameer Azam","doi":"10.1016/j.physe.2024.116121","DOIUrl":null,"url":null,"abstract":"<div><div>In this research work, we prepared NiO@SnO<sub>2</sub> (N1), NiO@ZnO (N2) and NiO@MnO<sub>2</sub> (N3) core-shell nanocomposites using sol-gel route. Prepared samples were investigated for their different properties employing various characterization techniques. The morphology and structure of the nanocomposites were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform Infrared Spectroscopy, X-ray diffraction analysis. Furthermore, the optical properties were analyzed using UV–Vis Spectroscopy, Photoluminescence Spectroscopy. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge-discharge(GCD) and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that all the prepared composites exhibits good electrochemical performance but N2 depicts superior results among all. The specific capacitance obtained for N2 is 720 F/g at 1 A g<sup>−1</sup> and excellent cycling stability (96.5 % retention after 6000 cycles at 1 A g<sup>−1</sup>). Therefore, this wok offers meaningful reference for supercapacitor applications in the future.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116121"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138694772400225X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this research work, we prepared NiO@SnO2 (N1), NiO@ZnO (N2) and NiO@MnO2 (N3) core-shell nanocomposites using sol-gel route. Prepared samples were investigated for their different properties employing various characterization techniques. The morphology and structure of the nanocomposites were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform Infrared Spectroscopy, X-ray diffraction analysis. Furthermore, the optical properties were analyzed using UV–Vis Spectroscopy, Photoluminescence Spectroscopy. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge-discharge(GCD) and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that all the prepared composites exhibits good electrochemical performance but N2 depicts superior results among all. The specific capacitance obtained for N2 is 720 F/g at 1 A g−1 and excellent cycling stability (96.5 % retention after 6000 cycles at 1 A g−1). Therefore, this wok offers meaningful reference for supercapacitor applications in the future.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures