Optimized deep learning enabled lecture audio video summarization

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-10-01 DOI:10.1016/j.jvcir.2024.104309
Preet Chandan Kaur , Dr. Leena Ragha
{"title":"Optimized deep learning enabled lecture audio video summarization","authors":"Preet Chandan Kaur ,&nbsp;Dr. Leena Ragha","doi":"10.1016/j.jvcir.2024.104309","DOIUrl":null,"url":null,"abstract":"<div><div>Video summarization plays an important role in multiple applications by compressing lengthy video content into compressed representation. The purpose is to present a fine-tuned deep model for lecture audio video summarization. Initially, the input lecture audio-visual video is taken from the dataset. Then, the video shot segmentation (slide segmentation) is done using the YCbCr space colour model. From each video shot, the audio and video within the video shot are segmented using the Honey Badger-based Bald Eagle Algorithm (HBBEA). The HBBEA is obtained by combining the Bald Eagle Search (BES) and Honey Badger Algorithm (HBA). The DRN training is executed by HBBEA to select the finest DRN weights. The relevant video frames are merged with the audio. The proposed HBBEA-based DRN outperformed with a better F1-Score of 91.9 %, Negative predictive value (NPV) of 89.6 %, Positive predictive value (PPV) of 90.7 %, Accuracy of 91.8 %, precision of 91 %, and recall of 92.8 %.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104309"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002657","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Video summarization plays an important role in multiple applications by compressing lengthy video content into compressed representation. The purpose is to present a fine-tuned deep model for lecture audio video summarization. Initially, the input lecture audio-visual video is taken from the dataset. Then, the video shot segmentation (slide segmentation) is done using the YCbCr space colour model. From each video shot, the audio and video within the video shot are segmented using the Honey Badger-based Bald Eagle Algorithm (HBBEA). The HBBEA is obtained by combining the Bald Eagle Search (BES) and Honey Badger Algorithm (HBA). The DRN training is executed by HBBEA to select the finest DRN weights. The relevant video frames are merged with the audio. The proposed HBBEA-based DRN outperformed with a better F1-Score of 91.9 %, Negative predictive value (NPV) of 89.6 %, Positive predictive value (PPV) of 90.7 %, Accuracy of 91.8 %, precision of 91 %, and recall of 92.8 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持深度学习的讲座音频视频摘要优化
视频摘要通过将冗长的视频内容压缩成压缩表示法,在多种应用中发挥着重要作用。本研究的目的是提出一种用于讲座音频视频摘要的微调深度模型。首先,从数据集中获取输入的讲座视听视频。然后,使用 YCbCr 空间颜色模型进行视频镜头分割(幻灯片分割)。使用基于蜜獾的白头鹰算法(HBBEA)对每个视频镜头中的音频和视频进行分割。HBBEA 结合了秃鹰搜索(BES)和蜜獾算法(HBA)。通过 HBBEA 执行 DRN 训练,以选择最佳 DRN 权重。相关视频帧与音频合并。所提出的基于 HBBEA 算法的 DRN 性能更优,F1 分数为 91.9 %,负预测值 (NPV) 为 89.6 %,正预测值 (PPV) 为 90.7 %,准确率为 91.8 %,精确度为 91 %,召回率为 92.8 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Illumination-guided dual-branch fusion network for partition-based image exposure correction HRGUNet: A novel high-resolution generative adversarial network combined with an improved UNet method for brain tumor segmentation Underwater image enhancement method via extreme enhancement and ultimate weakening Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1