Bingquan Chen , Manni Wu , Jiayi Qin , Ling Zhang , Xianying Cao , Ke Jiang
{"title":"Prussian blue-EGCG nanoparticles for synergistic photothermal and chemo anticancer therapy in vitro","authors":"Bingquan Chen , Manni Wu , Jiayi Qin , Ling Zhang , Xianying Cao , Ke Jiang","doi":"10.1016/j.dyepig.2024.112487","DOIUrl":null,"url":null,"abstract":"<div><div>Photothermal therapy (PTT) is an innovative cancer treatment that converts light into heat to induce tumor cell death. Compared to traditional therapies, PTT is minimally invasive, has low drug resistance, and targets tumors with high specificity. However, its standalone use is limited due to potential tumor adaptation to heat and the risk of collateral damage to healthy tissues. Combining PTT with chemotherapy could overcome these challenges. Prussian blue (PB) is a promising photothermal agent due to its strong near-infrared absorption and excellent heat conversion properties, but its small pore size restricts the loading of therapeutic agents. This study introduces a novel nanosystem that modifies PB with an Fe-EGCG polyphenol nano-layer to enhance drug delivery capabilities. The system effectively inhibited cancer cell growth in vitro under low-power near-infrared laser exposure, achieving up to 75 % inhibition by combining mild-temperature (44 °C) photothermal therapy with chemotherapy. This approach offers a viable strategy for integrating non-porous materials into synergistic cancer treatments.</div></div>","PeriodicalId":302,"journal":{"name":"Dyes and Pigments","volume":"232 ","pages":"Article 112487"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyes and Pigments","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143720824005539","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Photothermal therapy (PTT) is an innovative cancer treatment that converts light into heat to induce tumor cell death. Compared to traditional therapies, PTT is minimally invasive, has low drug resistance, and targets tumors with high specificity. However, its standalone use is limited due to potential tumor adaptation to heat and the risk of collateral damage to healthy tissues. Combining PTT with chemotherapy could overcome these challenges. Prussian blue (PB) is a promising photothermal agent due to its strong near-infrared absorption and excellent heat conversion properties, but its small pore size restricts the loading of therapeutic agents. This study introduces a novel nanosystem that modifies PB with an Fe-EGCG polyphenol nano-layer to enhance drug delivery capabilities. The system effectively inhibited cancer cell growth in vitro under low-power near-infrared laser exposure, achieving up to 75 % inhibition by combining mild-temperature (44 °C) photothermal therapy with chemotherapy. This approach offers a viable strategy for integrating non-porous materials into synergistic cancer treatments.
期刊介绍:
Dyes and Pigments covers the scientific and technical aspects of the chemistry and physics of dyes, pigments and their intermediates. Emphasis is placed on the properties of the colouring matters themselves rather than on their applications or the system in which they may be applied.
Thus the journal accepts research and review papers on the synthesis of dyes, pigments and intermediates, their physical or chemical properties, e.g. spectroscopic, surface, solution or solid state characteristics, the physical aspects of their preparation, e.g. precipitation, nucleation and growth, crystal formation, liquid crystalline characteristics, their photochemical, ecological or biological properties and the relationship between colour and chemical constitution. However, papers are considered which deal with the more fundamental aspects of colourant application and of the interactions of colourants with substrates or media.
The journal will interest a wide variety of workers in a range of disciplines whose work involves dyes, pigments and their intermediates, and provides a platform for investigators with common interests but diverse fields of activity such as cosmetics, reprographics, dye and pigment synthesis, medical research, polymers, etc.