{"title":"Protein mimics of fusion core from SARS-CoV-1 can inhibit SARS-CoV-2 entry","authors":"Yancheng Zhan , Moxuan Li , Rui Gong","doi":"10.1016/j.bbrc.2024.150857","DOIUrl":null,"url":null,"abstract":"<div><div>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus (subgenus Sarbecovirus) and shares significant genomic and phylogenetic similarities with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). SARS-CoV-2 infection occurs through membrane fusion between the virus and host cell membranes, which is facilitated by the spike glycoprotein subunit 2 (S2). The folding of three heptad-repeat regions 1 (HR1) into a central trimeric core structure, along with the binding of three heptad-repeat regions 2 (HR2) in an antiparallel manner within the groove formed between the HR1 regions, which provides the driving force for membrane fusion. In this study, trimeric and monomeric six-helix bundles (6HB) were created by combining various truncations of the sequences from SARS-CoV-2 HR1 and HR2. In addition, monomeric five-helix bundles (5HB) were constructed using a similar method. Finally, we demonstrated a protein mimic, 5HB_V1 (from SARS-CoV-1), that exhibits activity in inhibiting SARS-CoV-2. These findings suggest a strategy to design monomeric 6HB and 5HB based on the SARS-CoV-2 fusion core: maintain the flanking sequences outside the α-helix region in HR2 and introduce point mutations to enhance hydrogen bonding between the helix bundles. The 5HB could be a target for designing new inhibitors against SARS-CoV-1 and SARS-CoV-2.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24013937","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus (subgenus Sarbecovirus) and shares significant genomic and phylogenetic similarities with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). SARS-CoV-2 infection occurs through membrane fusion between the virus and host cell membranes, which is facilitated by the spike glycoprotein subunit 2 (S2). The folding of three heptad-repeat regions 1 (HR1) into a central trimeric core structure, along with the binding of three heptad-repeat regions 2 (HR2) in an antiparallel manner within the groove formed between the HR1 regions, which provides the driving force for membrane fusion. In this study, trimeric and monomeric six-helix bundles (6HB) were created by combining various truncations of the sequences from SARS-CoV-2 HR1 and HR2. In addition, monomeric five-helix bundles (5HB) were constructed using a similar method. Finally, we demonstrated a protein mimic, 5HB_V1 (from SARS-CoV-1), that exhibits activity in inhibiting SARS-CoV-2. These findings suggest a strategy to design monomeric 6HB and 5HB based on the SARS-CoV-2 fusion core: maintain the flanking sequences outside the α-helix region in HR2 and introduce point mutations to enhance hydrogen bonding between the helix bundles. The 5HB could be a target for designing new inhibitors against SARS-CoV-1 and SARS-CoV-2.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics