Shaoyong Han , Zhen Wang , Mohammed El-Meligy , Kashif Saleem
{"title":"Aero-thermodynamic responses of a novel FGM sector disks using mathematical modeling and deep neural networks","authors":"Shaoyong Han , Zhen Wang , Mohammed El-Meligy , Kashif Saleem","doi":"10.1016/j.ast.2024.109652","DOIUrl":null,"url":null,"abstract":"<div><div>Composite sector disks have extensive applications in aerospace industries, particularly when exposed to challenging conditions such as supersonic airflow and thermal environments. These applications leverage the superior properties of composite materials, including high strength-to-weight ratios, enhanced durability, and excellent thermal resistance, to meet the stringent requirements of aerospace operations. Multi-directional functionally graded (MD-FG) materials due to high-temperature resistance and other amazing properties in each direction have gotten plenty of attention recently. So, in this research, a thermoelasticity solution has been presented to study fundamental frequency traits of an MD-FG sector disk in supersonic airflow via both mathematics simulation and deep neural networks technique. For obtaining exact displacement fields, along with defining the changes of transverse shear strains along the system's thickness, the refined zigzag hypothesis is utilized. For obtaining the temperature-dependent equations, heat conduction relation and thermal boundary conditions of the MD-FG structure are presented. A coupled quasi-3D new refined theory (Q3D-NRT) and generalized differential quadrature method (GDQM) are presented for obtaining and solving the partial differential equations in the time-displacement domain. After obtaining the mathematics results, appropriate datasets are made for testing, training, and validation of the deep neural networks technique. Finally, the results have shown that aerodynamic pressure, temperature changes, Mach number, free stream speed, and air yaw angle have a major role in the stability/instability analyses of the thermally affected MD-FG sector disk in supersonic airflow. As an amazing outcome, increasing the sector angle, FG indexes, and temperature change lead to the reduction of the critical Mach number, and aerodynamic pressure associated with the flutter phenomenon.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109652"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007818","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Composite sector disks have extensive applications in aerospace industries, particularly when exposed to challenging conditions such as supersonic airflow and thermal environments. These applications leverage the superior properties of composite materials, including high strength-to-weight ratios, enhanced durability, and excellent thermal resistance, to meet the stringent requirements of aerospace operations. Multi-directional functionally graded (MD-FG) materials due to high-temperature resistance and other amazing properties in each direction have gotten plenty of attention recently. So, in this research, a thermoelasticity solution has been presented to study fundamental frequency traits of an MD-FG sector disk in supersonic airflow via both mathematics simulation and deep neural networks technique. For obtaining exact displacement fields, along with defining the changes of transverse shear strains along the system's thickness, the refined zigzag hypothesis is utilized. For obtaining the temperature-dependent equations, heat conduction relation and thermal boundary conditions of the MD-FG structure are presented. A coupled quasi-3D new refined theory (Q3D-NRT) and generalized differential quadrature method (GDQM) are presented for obtaining and solving the partial differential equations in the time-displacement domain. After obtaining the mathematics results, appropriate datasets are made for testing, training, and validation of the deep neural networks technique. Finally, the results have shown that aerodynamic pressure, temperature changes, Mach number, free stream speed, and air yaw angle have a major role in the stability/instability analyses of the thermally affected MD-FG sector disk in supersonic airflow. As an amazing outcome, increasing the sector angle, FG indexes, and temperature change lead to the reduction of the critical Mach number, and aerodynamic pressure associated with the flutter phenomenon.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.